

Lecture 8:
Bourne shell scripting (I)

Have you started HW3 yet?

Exit status

● Every command run returns an exit status
– 0 = success

– Anything else = failed, somehow

– $? = exit status of last command

● grep -q – doesn't print anything

– Only useful for exit status

– What if grep didn't have -q?

● Argument to
– Java's System.exit

– C's return from main()

Signals

● What kill really does:

– Send a “signal” to a process or job

– Default = SIGTERM (TERMinate; please quit)

– 9 = SIGKILL (KILL; extreme prejudice)

– CTRL-C = SIGINT (INTerrupt)

● yes > /dev/null (CTRL-C)

– $? = 130 = 128 + 2; 2 = SIGINT

● yes > /dev/null; kill -9

– $? = 137 = 128 + 9; 9 = SIGKILL

Using exit status; if/else

● if grep -q purple colors

● then echo found purple

● else echo did not find it

● fi

● Newlines are important!

If/else in general

● if command1

● then command2

● elif command3

● then command4

● ...

● else command5

● fi

Semicolons

● Multiple commands on the same line – separate
with semicolon

● Semicolon can substitute for a newline (but only
for Bourne shell)

● if grep -q purple colors; then echo
Yes; else echo No; fi

Other conditions: test

● test -f /etc/password

– true if /etc/password exists and is a normal file – so
true

● test 25 -gr 7

– True if 25 > 7 – so true

● test Hello = World

– True if Hello = World – so false

● Many other conditions

● Can be called [instead of test (need])

Arguments to shell scripts

● ./myscript.sh 25 “Hello, World”

● $0 = name of the shell script
– $0 = ./myscript.sh

● $1 = first argument, $2 = second, etc.
– $1 = 25

– $2 = “Hello, World”

● “$*” = “25 Hello, World”
● “$@” = “25” “Hello, World”

equal.sh

● #!/bin/sh

● if [$1 = $2]; then echo Equal;
else echo Nope; fi

● ./equal.sh Red Red

● ./equal.sh Red Blue

For loops

for ii in 1 2

do

 echo $ii

done

● Prints
– 1

– 2

– 3

● Note ii versus $ii

A script with for

#!/bin/sh

for ii in “$@”; do

 echo $ii

done

Using for on the command line
(sh/bash/ksh)

● for ff in *.doc; do cp $ff $ff.bak;
done

● for ff in *.jpg; do mv $ff `echo $ff
| sed -E 's/([0-9]+)-([0-9]+)-([0-
9]+)/\3-\2-\1/'`; done

