

CS114: Lecture 6
sed & awk

HW2 due tonight

No lecture Monday (Fall Break)

Redirection

● echo something > outputfile

– If outputfile existed before, old file is deleted!

– New file created; contents =
 something

● echo anything >> outputfile

– anything appended to outputfile

– outputfile is now
something
anything

● tr 'a-z' 'A-Z' < inputfile

– inputfile needs to exist

Shell variables

● When do variables need $ and when not?
– $foo -> replaced by shell with value of foo variable

● echo “My favorite color is $foo”

● ls $PWD/bar

– set foo = ... / setenv foo ...

● Shell variables aren't declared
– When you set the value, it doesn't matter whether

or not had value before

Automatic text processing

● What if I want to ...?
– Strip directory prefixes from paths

– Print column 2, 4, and 7 of a file

– Remove comments from a shell script

– Convert from a DOS to UNIX text file

● Answer: write a Java program
– NO!

– sed, awk (or perl, python, ...)

– Right tool for the right job.

sed (Stream Editor)

● sed 's/regex/text/' file

● echo “roses are red” > poem

● sed 's/red/blue/' poem

– roses are blue

● echo “roses are red” | sed
's/red/blue/'

– roses are blue

More useful sed examples

● Strip directory prefixes from paths
– sed 's/.*\///'

● Convert from DOS to UNIX text file
– sed 's/^M//'

● This is not ^ followed by M; you press Ctrl-V then Ctrl-M

● Make a MANPATH
– setenv MANPATH `echo $PATH | sed
's/bin/man/g'`

A sed script

● Any text file that begins with #! is a script
● cat trim.sed

#!/usr/bin/sed -f
s/^ *//
s/ *$//

● echo “ lots of extra space “ |
trim.sed

– lots of extra space

awk

● Actually a programming language
● Oriented towards database-like text files

● Print the second and fourth columns
– echo “This is a test” | awk '{print
$2, $4}'

● is test

awk: guards

● awk 'guard {command}'

● Print third column of lines containing 'blue'
– awk '/blue/ {print $3}'

● Print lines where second column is “red”
– awk '$2==”red” {print}'

● Print lines between “#START” and “#FINISH”
– awk '/#START/,/#FINISH/ {print}'

awk: variables

● $0 – entire current line

● $1, $2, $3, ... - Field 1, field 2, field 3

● NF = number of fields in current record

● FS = field separator

● foo – user-declared variable foo

awk: special guards

● Sum second column
– awk '{sum += $1} END {print sum}'

● END happens once at the end
● BEGIN happens once at the beginning

Other scripting languages

● Python
● Perl
● Tcl
● Ruby
● Embedded scripting languages

– PHP (server-side webpages)

– Lua (e.g. World of Warcraft)

– JavaScript (client-side webpages)

– Lisp (Emacs)

