
CS 114 - Fall 2004
Lecture 9 - Monday, October 18, 2004
Shell scripts
Control flow
The Bourne shell provides several control-flow commands for use in shell scripts. Most of these
control-flow commands test exit status of a command. If the exit status of a command is 0, indicating
success, then the test is true; otherwise, the test is false.

if command1; then
 command2
fi

if command1 is successful (i.e., its exit status is 0), then run command2.
if command1; then
 command2
else
 command3
fi

if command1 is successful, then run command2; otherwise, run command3.
if command1; then
 command2
elif command3; then
 command4
else
 command5
fi

if command1 is successful, then run command2; otherwise, if command3 is successful, run
command4; otherwise, run command5.

while command1; do
 command2
done

while command1 is successful, run command2.
until command1; do
 command2
done

until command1 is successful, run command2.
For example, the following program echoes "hello found" if the file file1 contains the string
"hello".

if egrep -q hello file1
then
 echo hello found
fi

The -q option tells egrep to not output the matching lines; the program simply exits with 0 if the string
is found, and non-zero otherwise.
Most programs do not have an option to suppress their output. However, stdout can be redirected to a
special file called /dev/null. For example, the following behaves identically to the program above.

if egrep hello file1 > /dev/null

then
 echo hello found
fi

Conditionals
Each of the control-flow commands above can branch on the exit status of any command. The
command test can be used to check specific conditions:

test -f file true if file exists and is a normal file.
test -d dir true if dir exists and is a directory.
test -e file true if file exists (may be a file or directory)
test -r file true if file is readable
test -w file true if file is writeable
test -x file true if file is executable
test num1 -eq num2 true if num1 equals num2

test num1 -ne num2 true if num1 does not equal num2

test num1 -gt num2 true if num1 is greater than num2

test num1 -lt num2 true if num1 is less than num2

test num1 -ge num2 true if num1 is greater than or equal to num2

test num1 -le num2 true if num1 is less than or equal to num2

test string1 = string2 true if string1 equals string2

test string1 != string2 true if string1 does not equal string2

test -n string true if string is non-empty
test -z string true if string is empty

The test command can also be invoked with the name [. For example:

if test $x -gt $y; then
 max=$x
fi

can also be written:

if [$x -gt $y]; then
 max=$x
fi

for loops

Another control flow statement is the for loop. for takes the name of a variable and a list. For
example,

for i in a b c; do
 echo $i
done

will echo

a
b
c

and

for i in "$@"; do
 echo $i
done

will echo each of the command-line arguments on a separate line.
for is also useful on the command line (if your shell is a Bourne shell like bash or ksh). For example,
the following command will create backups of all files in the current directory:

$ ls
file1 file2 scratch
$ for i in *; do cp "$i" "$i.bak"; done
$ ls
file1 file2 scratch
file1.bak file2.bak scratch.bak

Command-line argument parsing
A script can take arguments on the command line. The first argument is in the special variable $1, the
second in $2, etc.,
The special variable $0 expands to the name of the script, and the variable $# expands to the number
of command-line arguments.
If $# is greater than 0, the shift command renames $2 to $1, $3 to $2, etc., unsets the last parameter
variable, and decrements $#.
The variables $* and $@ both expand to all of the command-line arguments. These variables behave
differently when enclosed in double quotes.

"$*" is equivalent to "$1 $2 $3 ..."
"$@" is equivalent to "$1" "$2" "$3" ...

In general, "$@" should be used rather than $*, since it correctly handles command-line arguments
containing spaces and other special characters.

A small example: watch
The following script, called watch, runs the command given on the command line every two seconds,
refreshing the display between each run. A similar program is found in many Linux distributions. I use
watch mainly to help debug networking problems. For example watch ifconfig will run the ifconfig
program every two seconds, which outputs, among other things, the IP address assigned to the host (or
not assigned, as is usually the case when I'm experiencing network problems).

#!/bin/sh

Height of window - 1.
height=39

while true; do
 clear
 (
 date
 echo
 "$@"
) | head -$height
 sleep 2

done

The program true simply returns 0, indicating success. A similar program false returns 1, indicating
failure. The program loops forever. It can be interrupted by typing Ctrl-C.
Each iteration of the loop first clears the screen with the clear program. Then the date and a blank line
are output, followed by the output of the command given to the script on the command line. The
output of several commands can be grouped together with parentheses and redirected, or, in this case,
piped to head in order to keep the output from scrolling off the screen. The commands in parentheses
are actually run in a subshell, a separate process; therefore, local variables are in scope only within the
subshell. The sleep program sleeps for the number of seconds given as its argument.

Adding command-line options to the thumbnail script
The following script adds command-line argument parsing to the make-thumbnail script from last
time. The new script can generate thumbnails for several images specified on the command line, not
just one image. It also adds an option -xy to specify the bounding box for the generating thumbnails
(200x200 by default), and adds an option -v to turn on verbose output,

#!/bin/sh

Create a thumbnail image from the file given on the command line.
usage: make-thumbnail [-xy MxN] [-v] files

Make sure the programs we need are in the path.
PATH=/usr/bin:/bin:/usr/local/graphics/jpeg-6b/bin:/usr/local/pbm

The default bounding box size.
x=200
y=200

Non-empty if verbose; default to non-verbose.
verbose=

Get just the filename part of the script name.
prg=`basename $0`

Process -xy and -v
while [$# -gt 0]; do
 if ["$1" = "-xy"]; then
 shift
 # $1 now contains MxN; check if it's there
 if [$# -eq 0]; then
 echo "$prg: missing argument to -xy"
 echo "usage: $prg [-xy MxN] [-v] files..."
 exit 1
 fi
 x=`echo $1 | sed 's/x[0-9]*//'` # get the number before the x
 y=`echo $1 | sed 's/[0-9]*x//'` # get the number after the x
 shift
 elif ["$1" = "-v"]; then
 verbose=yes
 shift
 else
 # Must be a file name; break out of the while loop
 break
 fi
done

Remaining arguments are in $@.

Complain if there are no files on the command line.
if [$# -eq 0]; then
 echo "usage: $prg [-xy MxN] [-v] files..."
 exit 1
fi

Compute the minimum of $x and $y
min=$x
if [$x -gt $y]; then
 min=$y
fi

Make sure all the input files exist
for jpg in "$@"; do
 if [! -r "$jpg"]; then
 echo "$prg: $jpg not found"
 exit 1
 fi
done

Create the thumbnails.
for jpg in "$@"; do
 thumb=`echo "$jpg" | sed 's/\.jpg$/.thumbnail.jpg/'`

 if [-n "$verbose"]; then
 echo "producing thumbnail $thumb from $jpg"
 fi

 # Use nawk to get image size. Change to awk or gawk if nawk not
found.
 w=`rdjpgcom -verbose "$jpg" |
 nawk '/^JPEG image is/ { sub("w$", "", $4); print $4 }'`
 h=`rdjpgcom -verbose "$jpg" |
 nawk '/^JPEG image is/ { sub("h,$", "", $6); print $6 }'`

 if [-n "$verbose"]; then
 echo "$jpg is $w * $h"
 fi

 # Want a thumbnail that's at most $x*$y, but preserves
 # the $w*$h aspect ratio

 # If the image already fits, just copy it.
 if [$w -le $x] && [$h -le $y]; then
 echo "$jpg already fits in a $x * $y bounding box"
 cp "$jpg" "$thumb"
 continue
 fi

 # Compute the smaller of the two scaling factors.
 factor=`echo "scale=4; if ($x/$w < $y/$h) ($x/$w) else ($y/$h)" |
bc`

 if [-n "$verbose"]; then
 echo "scaling $jpg by $factor to fit in $x * $y bounding box"
 fi

 djpeg -pnm "$jpg" | pnmscale $factor | cjpeg > "$thumb"
done

