
CS 114 - Fall 2004
Lecture 5 - Monday, October 5, 2004
I/O redirection
In Unix, a job normally has at least 3 I/O channels it can use to communicate:

stdin - the standard input channel,  where it reads its input
stdout - the standard output channel,  where it writes its output
stderr - the standard error channel,  where it writes its error messages

Most programs print their output to stdout and error messages to stderr (some screen-oriented
programs such as Emacs, pine,  or X Windows programs are an exception).  Many programs that normally
operate on files would operate on stdin when no file argument is given. Other programs would allow
users to specify - as a filename to specify reading from stdin or writing to stdout. The man pages for
a command or program will tell you whether and how it can read from stdin or write to stdout.
By default,  all three channels point to the console (the terminal).  However,  any of them can be
redirected.  To redirect stdin from a file,  you append < file to the command. This will force the
command to read the input it reads from stdin from the specified file.
To redirect stdout to a file,  you append > file to the command. This will send all the output that the
program writes to stdout to the specified file.  If the file already exists,  it may or may not be
overwritten,  depending on your shell.  You can prevent the file from being overwritten,  you can add the
command set noclobber to your shell rc file.
To append to the end of a file,  you can redirect using >> file instead.
You can take a command and connects its output channel to the input channel of another command.
This is called a pipe. To do so, you put a | between the commands, such as:

% command1 | command2

It is possible to do many redirections at the same time:

command1 < infile | command2 | command3 | command4 > outfile

This is often called a pipeline. The following programs are useful on their own,  but are also interesting
when used in a pipeline:

fgrep string file ... searches for the string string in file If no file is specified,  it reads
from stdin.
wc file1 file2 ... prints file sizes (and total), including character,  word and line counts.
sort reads a file from stdin and outputs to stdout the lines sorted in alphabetical order (this
can be changed; see the man pages).

As an example of the above,  consider searching a big file f for text hello via fgrep. You can sort the
resulting lines using the following pipeline:

fgrep hello f | sort

or similarly count the number of lines (and words,  and characters) in the matching lines,  using:

fgrep hello f | wc



Job control
When you run a program from a shell,  this running program is called a job. So far we've only been
running one program at a time, but it is possible and useful to run multiple programs at once. For
example, a job may be a very long running program that can work in the background while you do
other things. At times you may be required to interrupt a job to do something else, knowing that you'll
want to return to the original job later.
A job can be in one of three states:

running in the foreground - the job is currently executing and can read from the console
running in the background - the job is currently executing, but cannot read from the console
(although it can write to it). If a job running in the background tries to read from the console,  it
will be suspended.
suspended - the job is interrupted but can be resumed

By default,  when you execute a program from the shell command line, it runs in the foreground.  To
suspend a program,  you (typically) press Ctrl-Z (Also typically, if you press Ctrl-C, it will quit the
program.) When you suspend a job,  you get an indication that it is suspended. To get a list of all jobs
you are running (or are suspended), you can use the command jobs, which outputs something like this:

$ jobs
[1]+ Stopped vi lec5.html
[2]- Running xterm &

For each job,  jobs returns its job number, and the command that initiated the job.  In the above
example, there are two jobs, one running in the background and one suspended. Note that jobs
doesn't show any jobs running in the foreground since jobs itself is running in the foreground.
To resume a suspended job,  use the command fg. This will resume the current job (indicated by the +
in jobs).  You can resume a specific job by running fg %job-number. Do not forget the %.
You can also resume a suspended job,  with the bg command. This runs the job in the background.
You can start a job directly in the background by invoking the command and adding a & at the end. For
example:

$ chmod -R go-rwx ~&
[2] 3270
$

will run chmod recursively on your home directory in the background.  Note that the job number is
printed along with another number,  called the process id. When a job is started in the background,  you
are immediately returned to the prompt.
You can usually terminate a program running in the foreground by hitting Ctrl-C To terminate a
suspended program or one running in the background,  you can use the command kill %job-number.
This will attempt to kill the job nicely (i.e.,  it will allow the job to perform "last rites"). This doesn't
always work. To kill a job "with extreme prejudice",  you can use kill -9 %job-number.
Every job in Unix corresponds to one or more processes. Processes are lower level than jobs and are the
unit of execution in Unix. Some processes correspond to user jobs. Others are started by the system
itself.  To see the currently running processes use the command ps. The output of ps looks something
like this:

$ ps  PID  TT  STAT      TIME COMMAND
 226  p1  S+     0:00.28 -bash



3261  p1  S      0:01.96 vi lecture5
 734  p2  S+     0:00.54 -bash
 840  p3  S+     0:00.10 -bash
 944  p4  S+     0:00.34 -bash
3789 std  S      0:00.13 -bash
3828 std  S      0:03.06 vi lec5.html
$

The first column displays the process id. The last column displays the name of the program that's
running (-bash indicates a bash login shell). ps can take command-line options. The options differ
depending on which version of Unix you are running.

Command on Linux, Mac
OS X on Solaris

default ps ps

list all processes in the current
terminal ps a ps -t terminal (use the tty command to get the

current terminal)
list all processes of the current
user ps u ps -u username

list all processes running in any
terminal ps a ps

list all processes on the system ps ax ps -e, ps -A

wide format ps w, ps ww ps -f, ps -l


