
CS 114 - Fall 2004
Lecture 2 - Wednesday, September 29, 2004
Files and directories; security
Last time we discussed the cd, pwd, and ls commands. The following commands are also useful for
dealing with files and directories. Recall than whenever we talk about a file or a directory, it actually
stands for a path to a file or directory.

mkdir directory - creates a directory
rmdir directory - removes a directory (only if it's empty and you're not inside it)
touch file - creates an empty file
cat file - dumps the contents of file to the console
rm file - removes file
mv oldname newname - renames (moves) a file
mv file1 file2 ... directory - moves files into a directory
cp oldname newname - copies a file
cp file1 file2 ... directory - copies files into a directory

Some commands have options, which affect the way they behave. Options are typically a letter preceded
by a -. For example, if you give the option -i to rm, that is, if you write rm -i file, the system will
prompt you for confirmation before deleting the file.

% rm -i file
rm: remove file (yes/no)?

Some commands understand many options. The command ls for instance, recognizes, among others,
the option -F, which makes ls give you some indication of the type of each file.

% ls -F file3 dir/

It appends a / at the end of every directory. ls also takes the option -a, which makes ls display
everything in the directory, including so-called hidden files. A file or directory is hidden if its name starts
with a dot (.), for example .hidden. Hidden files aren't really special in any way, except that ls by
default will not list them. Typically, programs needing configuration files will make those files hidden,
otherwise they clutter up your home directory.

Unix security
Creating and deleting directories, and copying, moving and deleting files raises a question: how do you
keep other users from messing around with your files? Or the system files?
Recall that each user has an identity, given by its username. Moreover, each user can belong to one or
more groups. Membership in a group is set by the system administrator. For example, everyone in this
class is a member of group cs114. I am also a member of group cs114, and I may also be a member of
group instructors. Thus, you can be a member of more than one group.
The following commands give you identity information on yourself or someone else:

id gives information on yourself
id username gives information on user username
groups prints the groups you're a member of
groups username prints the groups user username is a member of

Permissions
To ensure only the right people can perform certain operations on a given file or directory, each file or
directory has associated with it an owner (usually, the creator) and a group, and a set of permissions,
which describe what these principals can do with the file or directory.
There are three ways in which a file or directory can be accessed: read, write or execute. They mean
different things for files and for directories:

 For a file For a directory
read (r) view contents list contents
write (w) modify content create, remove, delete files in directory
execute (x) run program enter directory (via cd)

For each file or directory, each of these permissions is associated with three principals: the owner, the
group, and everyone else. Thus, each file has read, write, and execute permissions (abbreviated r/w/x
permissions) for the owner, r/w/x permissions for members of the group, r/w/x permissions for
everyone else.
This kind of information is summarized by a string of 9 characters of the form xxxyyyzzz where xxx
represents the r/w/x permissions of the owner, yyy the r/w/x permissions of the members of the
group, zzz the r/w/x permissions of everyone else. Each set of r/w/x permissions is of the form abc
where a is either r or -, b is either w or -, and c is either x or -. You will sometimes see s (or even t)
instead of x; assume for now that it means the same as x. A - indicates simply that the corresponding
permission is denied.
Consider the following examples:

rw------- only the owner can read and write
rw-rw-rw- everyone can read and write
---rw---- all members of the group (excluding the owner) can read and write
rwxrwx--- the owner and all members of the group can read, write, and execute

How do you check the permission of a file or a directory? If you give the ls command the -l option (-l
stands for "long display"), it will show you the permissions of the files and directories it lists:

% ls -l
total 64
drwxr-sr-x 3 cs114 cs114 4096 Mar 8 2002 Archive
-rw-r----- 1 cs114 cs114 3710 Aug 17 1995 README
-rw-r----- 1 cs114 cs114 5894 Aug 3 1993 X11.ReadMe
-rwxr-x--- 1 cs114 cs114 5322 Feb 5 1997 cshrc.proj
-rwxr-x--- 1 cs114 cs114 1429 Feb 5 1997 login.proj
drwxr-s--- 2 cs114 cs114 4096 Feb 15 2001 mboxes

The leftmost string of characters on each line gives you type and permission information for the
corresponding file. The first character is either d for a directory, or - for a file. (You will sometimes see
l as well; this says that file is a link to another file. We'll cover links later in the course.) The following 9
characters are the permissions, as described above. Later on the line, you get the owner of the file or
directory (cs114 in all the examples above), as well as the group associated with the file or directory
(cs114 as well in all the examples above). For example, you see that the owner has read, write and
execute permissions on directory Archive, while members of the cs114 group have read and execute
access, as do everyone else for that matter.

Changing permissions

The command chmod changes permissions on a file or a directory. The command is invoked as follows:

% chmod spec arg1 arg2 ...
which changes the permissions of the files/directories arg1, ... according to the specification spec.
A specification has the form <who><mode><permissions>, as follows:

<who> is any combination of the letters u (the owner, or user), g (the group), and o (others). The
letter a (for all) can also be used; it is equivalent to ugo.
<mode> is either + (adding permissions), - (removing permissions), or = (setting permissions).
<permissions> is any combination of the letters r, w, and x.

For example,

chmod a+r file

adds read permission to all (user, group, others) to file file.

chmod go-rwx file

removes read write and execute permission for the group and everyone else (execpt the user) for the
file file.
You can combine multiple specifications by separating them with a comma. Hence,

chmod ug+w,o-w file

adds write permissions for file file for the owner and group, but removes write permissions for
everyone else.
As with chown and chgrp, you can recursively change permissions for all files in all subdirectories of a
directory by using the -R option. For example,

chmod -R o-rwx directory

Changing the owner and group
How do you change things such as the owner or group of a file or directory? Unix provides the following
commands:

chown username arg1 arg2 ... changes the owner of the files/directories arg1, ... to
username. Only the super user, root, can change the owner of a file.
chgrp groupname arg1 arg2 ... changes the group associated with the files/directories arg1,
... to groupname. Unless you are the super user, you can only change the group of a file to a
group you are in.

To recursively change the owner (or the group) of all the files in all the subdirectories of a given
directory, you can give the commands the -R option.

