
Unix Tools Lecture 9
CS114 Fall 2003 Monday, October 20, 2003

More substitutions

Last time, we saw that the shell performs wildcard substitutions in filenames. There are other
substitutions or expansions that get performed automatically:

• $var wherevar is a shell variables (see next section). This is replaced by the value of the
shell variable.

• ‘command ‘ this is replaced by whatever executingcommand sends tostdout.

• "..." indicates that within the double-quotes, only variable and command substitutions
should occur (i.e., no wildcard expansion).

• ’...’ indicates that within the single-quotes, no substitutions should occur (no wildcard,
variable or command substitution). Avoiding substitutions is the reason I told you that the
first argument togrep (the regular expression) should be enclosed in single-quotes.

Here is a more complete example showing different kind of substitutions.

babbage% ls

2000FA HW1 bin foo netids share test.sh~

2001SP HW2 f man netids~ test.sh tmp

babbage% echo H*

HW1 HW2

babbage% echo $HOME

/home/cs114

babbage% cat f1

this is a line

babbage% cat f2

H* $HOME

babbage% echo ‘cat f1‘

this is a line

babbage% echo ‘cat f2‘

HW1 HW2 $HOME

1

We see that the result of command substitution is further substituted, but only wildcard expansion
is performed. Understanding substitution is slightly tricky when you get to more complicated
examples, and some shells differ in such handling. Look into the man pages of the shell that
interests you.

Shell variables

Shells have a notion of variables, each of which can contain data in the form of a string of charac-
ters. There are two kinds of shell variables:

• local variablesthat are only seen by the current shell

• environment variablesthat are seen by all programs that the shell starts. There is a way
for program to access environment variables. Environment variables can then be used for
configuration of programs.

The shell families have different ways of setting up local and environment variables. For the
Bourne shell family:

• var =value sets the local variablevar to the given value

• unsert var undefines the given variable

• export var makes the given local variable into an environment variable

• export var =value creates an environment variable with the given value

• export -n var makes an environment variable into a local variable (undoing the export)

For the C shell family:

• set var =value sets the local variablevar to the given value

• unset var undefines the given variable

• setenv var value creates an environment variable and gives it the specified value

• unsetenv var undefines the given environment variable

Here are some useful environment variables, understood by many programs:

2

• PATH holds a list of paths (separated by:) that the system searches for a command. To add a
new path to thissearch path, you can do the following inbash: export PATH=/foo/bar:$PATH.
If you understand what this line does and why, you’ve understood shell substitution.

• HOME contains the full path to your home directory

• USER contains your username

• SHELL contains the full path to your shell

• TERM contains your terminal type, as determined by the system when you logged in.

Variables in bash

here’s a model that may help nail down the behavior of variables in bash. Recall that there are two
kinds of variables: local variables, and environment variables (also called global variables). The
idea is an environment variable will propagate itself to a subshell, while a local variable is, as the
name indicates, purely local to a given shell.

You can picture things this way. Each shell has a list of variables and their values. Some of
the variablesmarkedas environment variables. Two separate facts contribute to the behavior of
variables:

1. In a given shell, a variable is either local or environment, but not both, i.e. it it either marked
or it is not.

2. When a new shell is created, the variables that were marked in the calling shell are passed
down, still marked to the new shell.

In a given shell, you can list all the variables by typingset. To specifically see the ones that are
marked as environment variables, typeexport. (The process of passing a variable from a shell to a
subshell is called exporting.)

If you define a variable asFOO=10, it is initially unmarked. To mark a variable for export, i.e.,
to make it an environment variable, you simply writeexport FOO. You can also define and mark
a variable for export at the same time:export FOO=10. To unmark a variable, you can useexport
-n FOO. The key thing to notice here is that the fact that a variable is an environment variable or
not is simply a mark; changing the value of an existing variable does not affect the mark. Hence,
consider the following sample interaction (comments in italics):

[cs214-sp02]$ FOO=tarzan define FOO

[cs214-sp02]$ echo $FOO

3

tarzan

[cs214-sp02]$ export FOO mark for export

[cs214-sp02]$ FOO=jane change its value

[cs214-sp02]$ bash invoke subshell

[cs214-sp02]$ echo $FOO

jane get updated value

[cs214-sp02]$ exit

[cs214-sp02]$

(I indicate a subshell by appropriate indentation.) In the above, we define a variableFOO, mark it
for export, and then change its value. The change in value does not affect the mark. So, when you
invoke a new shell, the variableFOO, marked for export, will be passed to the new shell, with its
current value.

The second fact mentionned earlier helps explain why changes to an environment variable in a
subshell does not affect the environment variables in calling shells. This is because each subshell
gets acopyof the environment variables of its parent. Hence, the interaction below:

[cs214-sp02]$ BAR=tarzan

[cs214-sp02]$ echo $BAR

tarzan

[cs214-sp02]$ export BAR export BAR

[cs214-sp02]$ bash invoke subshell

[cs214-sp02]$ echo $BAR

tarzan sanity check...

[cs214-sp02]$ BAR=jane change the value of BAR

[cs214-sp02]$ echo $BAR

jane

[cs214-sp02]$ export | grep BAR

declare -x BAR="jane" Note that BAR is still marked

[cs214-sp02]$ exit

[cs214-sp02]$ echo $BAR Original value

tarzan

[cs214-sp02]$

Specifically, since the subshell is acting only on a copy of theBARvariable, any changes it makes
only affects its copy. The variable in the calling shell is unaffected.

Remembering the two facts above help answer most variable-related questions: the fact that
whether or not a variable is an environment variable is simply a mark attached to the variable,
and the fact that a copy of those variables that are marked is passed to subshells.

4

