
Unix Tools Lecture 6
CS114 Fall 2003 Friday, October 10, 2003

Jobs

In Unix, every time you execute a program, this is called ajob. Up until now, there was only one
job at a time executing, namely the command or program you happen to call from the command
line. However, it is useful to be able to have many jobs at once. For example, a job may be a very
long running program that can work in the background while you do other things. At times, you
may be required to interrupt a job to do something else, but knowing that you’ll want to return to
the original job and pick up where you left off.

A job can be in one of three states:

• suspended, meaning it is interrupted, but can be resumed

• running in the foreground, meaning it is currently executing and it can read and write to the
console

• running in the background, meaning it is running but cannot read and write from the console.

By default, if you just execute a command or a program as usual, it runs in the foreground. To
suspenda program, you (typically) press CONTROL-z. (Also typically, if you press CONTROL-
c, it will quit the program.) When you suspend a job, you get an indication that it is suspended. To
get a list of all the jobs you are running (or are suspended), you can use the commandjobs, which
outputs something like this:

babbage% jobs

[1] - Suspended (tty output) emacs -nw

[2] + Suspended (tty input) cat

[3] Running xterm

For each job,jobs returns itsjob number, its status, and the command that initiated the job. In
the above example, there are three jobs, two suspended, and one running in the background (since
jobs is running in the foreground!) Job numbers are assigned by Unix, in increasing order.

How do you resume a suspended job? You use the commandfg %job-number . Do not forget the
%. This will resume the given job and put it in the foreground. (If you simply putfg, the current
job, for instance the last job you suspended, is resumed.)

1

If you use the commandbg %job-number instead, the given job is resumed but in the background.
(Again, you can omit the job number.) I said earlier that a job running in the background cannot
read or write to the console. What happens if the program you want to resume needs to read or
write to the console? Unix will not allow you to put it in the background, and will instead suspend
it automatically if you attempt abg. In the sample output forjobs above, the termttyoutput and
ttyinput respectively indicate that the job require console output or console input, and therefore
cannot be put in the background.

You can also start a job directly in the background, by invoking the command and adding a& at the
end of the line. We haven’t seen too many examples of programs that can be run in the background,
but say that you have a long job such as doing achmod recursively in a huge directory. You can do
this in the background by invoking, say,chmod -R og-rwx directory &.

You can also kill a job that is either suspended or running in the background. The commandkill

%job-number will attempt to nicely kill the job (i.e. will allow the job to perform ”last-rites”).
This doesn’t always work. To kill a job ”with extreme prejudice”, you can always go for thekill

-9 %job-number options.

(To every job in Unix corresponds one or more processes. Processes are lower level, and are
actually the unit of execution that Unix understands. Some processes correspond to user jobs,
some processes are started by the system itself to handle its own processing. To see the processes
you are currently running, tryps. If you want to see all the processes associated with an actual
user, tryps -a. If you want to see all the processes in the machine, tryps -e. That gives you an
idea of the amount of work an operating system performs.)

I/O redirection

In Unix, a job normally has at least 3 I/O channels it can use to communicate:

• stdin the standard input channel, where it reads its input

• stdout the standard output channel, where it writes its output

• stderr the standard error channel, where it writes its error messages

Most programs print their output tostdout and error messages tostderr (some screen-oriented
programs such as Emacs, pine, or X Windows programs are an exception). Many programs that
normally operate on files would operate onstdin when no file argument is given, for example,
grep. Other programs would allow users to specify- as a filename to specify reading fromstdin
or writing tostdout. The man pages for a command or program will tell you whether and how it
can read fromstdin or write tostdout.

2

By default, all three channels point to the console (the terminal). However, any of them can be
redirected.

To redirectstdin from a file, you append< file to the command. This will force the command
to read the input it reads fromstdin from the specified file.

To redirectstdout to a file, you append> file to the command. This will send all the output
that the program writes tostdout to the specified file. If the file already exists, it is (most of the
time) overwritten. This “most of the time” depends on the shell you are using. We will cover shells
next week. To append to the end of a file, you can redirect using>> file instead.

You can take a command and connects its output channel to the input channel of another com-
mand. This is called apipe. To do so, you put a| between the commands, such ascommand1 |

command2 .

It is possible to do many redirections at the same time:command1 < infile | command2 |

command3 | command4 > outfile . This is often called apipeline.

The following programs are useful on their own, but are also interesting when used in a pipeline:

• wc file1 file2 ... prints file sizes (and total), including character, word and line
counts. If no file is specified, it reads fromstdin.

• sort reads a file fromstdin and outputs tostdout the lines sorted in alphabetical order
(that can be changed; see the man pages).

As an example of the above, consider searching a big filef for texthello via fgrep. you can sort
the resulting lines using the following pipeline:fgrep hello f | sort, or similarly count the
number of lines (and words, and characters) in the matching lines, usingfgrep hello f | wc.

Most commands that expect input from a file will accept input fromstdin when you do not specify
a file (see the man pages for the command to confirm that this is the case). For example,grep will
behave this way. This allows you, for example, to search forhello and sort the resulting lines in
many files by usingcat to concatenate the files, before piping the result tofgrep:

cat f1 f2 f3 | fgrep hello | sort

One question arises: what happens when you execute a command that reads its input fromstdin

(for example, grep without a filename), and you do not specify a redirection to read the input from
a file or from a pipe? Unix will ask you to enter the file by hand. This can be confusing, so I’ll
walk you through it. Let’s pick a simple example. The commandcat sends the contents of a file
to stdout. If you do not specify a filename, it will send the content ofstdin to stdout. If you
redirect the output to a filef, it will send the content ofstdin to f, as in

3

cat < f

However, if you execute the command above from the command line, as is, then Unix will simply
display a cursor and wait for you to type in something. In essence, it is asking for you to type
something directly to thestdin of the command, to type in a file by hand. So you can just type
away, pressing ENTER to start new lines, etc. Everything you type is fed to thestdin of cat. To
tell Unix you’re done entering the file, you press CONTROL-d (this is the end-of-file character, or
EOF). This will indicate to Unix that you have finished entering the type, and it continues executing
the command, in this case sending whatever you typed in to filef. So, if you try:

babbage% cat > f

this is a test

this is a line

this is another line

I’m done

babbage%

(pressing control-d after ”I’m done”), you get these lines in filef, which you can see by doing a
cat f:

babbage% cat f

this is a test

this is a line

this is another line

I’m done

4

