
Unix Tools Lecture 11
CS114 Fall 2003 Friday, October 24, 2003

Script arguments

Last time, we introduced the idea of shell scripts. Today, we endeavor to make shell scripts more
useful.

First off, comments are useful in shell scripts. Comments are introduced by#, and anything after
a# until the end of the line is ignored.

If you look back at our example last time, you notice that the shell script is not very useful. It is
hard-wired to work onfile1 andfile2. It would be much nicer to be able to specify asarguments
to the script the two files to act on, just as you would with any other command. To deal with such
arguments, when a script is executed, special shell variables are set up to contain the arguments
passed to the script. These variables are referred to as$1, $2, $3, ..., for the first, second, third,...
argument to the script. Hence, a nicer version of the script would be (intest2.sh):

#!/bin/bash

fgrep ’hi’ $1 > tmp1

fgrep ’hello’ $2 > tmp2

cat tmp1 tmp2 | sort

To invoke such a script, after making it executable,

test2.sh file1 file2

One thing that the script doesn’t do is check whether it has the right number of arguments. Equiv-
alently, it could do something different if it got no arguments, or only one arguments (for example,
read one of the files fromstdin). We will see in a little bit how to do that. For now, let’s mention
some other special variables set up by the shell when a script is invoked:

• $# holds the number of arguments supplied to the script

• $0 holds the name under which the script was invoked (in the example above, it would hold
test2.sh).

1

Exit codes

When a command exists, not only does it perform some input and output (maybe), but it also
reports to the shell a status in the form of anexit code, a number typically between 0 and 255. An
exit code of 0 means that the command succeeded, while a code different than 0 means that the
command failed in some way. The man pages for the command will tell you precisely what exit
codes can be returned by the command. For example,grep will return an exit code of 0 if it has
found at least one match, it will return an exit code of 1 if it not found any matches, and it will
return an exit code of 2 if there has been an error (for example, you grep on a file that does not
exist).

There are many ways of combining commands, some of them using exit codes. I will usebash

syntax for the time being, since your homework will usebash. Corresponding constructs exist for
the C shell family.

• command1 ; command2 will execute firstcommand1 , and then executecommand2 . In a
script, this is equivalent to putting the commands on two different lines.

• command1 && command2 will first executecommand1 , and if it succeeds, executecommand2 .

• command1 || command2 will first executecommand1 and if it fails, will executecommand2

The exit code of a combined command is the exit code of the last command executed in the combi-
nation. Combinations can be nested. You can wrap any combination withincommand ; (the space
after thecommand is important). The command(command) will executecommand in a subshell.

A shell script can also return an exit code. By default, it is the exit code of the last command
executed in the script. To force a script to terminate with a given exit code, you can useexit n

wheren is the exit code.

Note that when I talk about a command, I mean a whole pipeline of commands. The exit code of
a pipeline is the exit code of the last command of a pipeline.

One place where exit codes are useful is inconditional. You can write the following command in a
script (in fact, also on the command line, but it’s rarely used):if command1 ; then command2

; fi. The idea is to executecommand1 , and if it succeeds, to executecommand2 . Condition-
als also allow the use of an else-clause, such as:if command1 ; then command2 ; else

command3 ; fi. Note that commands can be compound commands (perhaps wrapped within
for disambiguation).

There are other control-flow commands available in the shell, such as while-loops and repeat-loops.
I’ll direct you to the man pages to learn more about those.

2

Tests

A very handy command is available to perform a variety of tests. It’s main purpose is not to
perform any input or output, but rather to test a condition and return an appropriate exit code. It is
most useful when used in the test of a conditional. The syntax is simply[condition].

The command returns an exit code of 0 ifconditionis satisfied, and an exit code different than 0
otherwise. Here are some useful conditions. Other conditions can be found on thebash man page.

• -f file tests iffile exists and is regular (i.e. not a directory or a special file such as a
link or a driver)

• -r file tests iffile exists and is readable

• -d file tests iffile exists and is a directory

• -n string tests ifstring has non-zero length

• -z string tests ifstring has zero length

• s1 = s2 tests if stringss1 ands2 are equal

• n1 -gt n2 tests ifn1 > n2

• n1 -lt n2 tests isn1 < n2

You may want to put strings in double-quotes, especially if they arise out of substitution of shell
variables, to avoid problems if the string turns out to be multiple words (or none).

For example, to check that our script above is supplied with at least two arguments, you can use:

if ["$#" -lt 2]

then

echo "Not enough arguments! Aborting"

exit 1

fi

3

