
Unix Tools Lecture 8
CS114 Fall 2002 Friday, October 18, 2002

Shells

When you login, Unix presents you with a command line that allows you to execute programs.

The core of Unix itself is actually not much more than a ”library” of code. Programs make calls to
routine inside Unix to display information on the terminal, to write to a file, to read from a file, to
interact with the network, etc. In fact, the interaction with Unix that you perform on the command
line is done through a special program that can read input from the command line, parse it, do I/O
redirections, call appropriate commands with appropriate options, etc. It is called acommand shell
(or justshellfor short).

There are many flavors of shells, split into two families, each family with a different feel, and each
member of any given family with different features. The first family is theBourne shell family,
with the following shells:

• sh, the very basic Bourne shell

• ksh thesh-compatible Korn shell

• bash the GNU Bourne-again shell, with features from bothksh andcsh (see below)

The second family is theC shell family, with shells:

• csh, the original C shell

• tcsh, an extended C shell with more functionality

Typically, when we say that something works for the Bourne shell, it will work for all the shells in
the Bourne shell family, and similarly for the C shell.

When you login, the system starts up an initial shell, which is called thelogin shell. You can
change which shell is you defauly shell when you login by invoking thechsh command at any
point.

Since a shell is just a program, you can always switch to a new shell by basically executing this
shell. For example, you can start an instance ofksh by simply executing it:

1

babbage% ksh

$

Since most shells will have different prompts (in my case, mycsh has a promptbabbage%, while
ksh has a prompt$), you can tell in this case that we are in a new shell. We can then issues com-
mands interpreted by this new shell. We will see in the coming lectures some of the differences
between the shells. One of them, for example, is I/O redirection, specifically how to handle redi-
rection to an existing file. The Bourne shells will typically overwrite the file, while the C shells
will report an error. In a C shell, if you do want to overwrite a file at redirection, you can redirect
using the&! redirection operator. This operator is not understood by Bourne shells.

What are the roles of the shell? It turns out that the shell is what manages jobs and I/O redirec-
tion (cf. Lecture 6). The shells is also in charge of parsing the command line and performing
substitutions. This is what we will focus on next.

Shell substitutions

When you enter a line at the shell prompt, before the shell executes the programs that you specify,
it will make a pass over the line you entered to perform various kinds of substitutions. Here are the
special characters that can be used to guide substitution:

• *, ?, [...] these arewildcard characters. They are replaced by the appropriate portion
of filenames. For instance, the wildcard character*, by itself, is replaced by the list of all
the files in the current directory. Hence, if you want to search forfoo in all the files in
the current directory, you can typefgrep ’foo’ *, which the shell will exand intofgrep
’foo’ file1 file2 file3 ... for all the files in the current directory. You can use
wildcards to match part of file names. For instance,*.txt will match any filename ending
with .txt, while a*b will match any filename starting witha and ending withb. Note that
theseare not regular expressions. They use wildcard characters. Another wildcard character
is ?, which can stand for any letter. Hence,a?c will be expanded into all the filenames in the
current directory that start witha, have one character following it and followed by ab. The
[abc] construct can be replaced by any of the characters within the brackets.

• \ is used to escape the following character. Since some characters have special meaning to
the shell, such as*, you need to escape them if you want to refer to the actual character. For
example, if you have a file called* in your current directory, and you want only to search for
foo in it, then you would need to writefgrep ’foo’ *, escaping the special* character.

• $var wherevar is a shell variables (see next section). This is replaced by the value of the
shell variable.

2

• ‘command ‘ this is replaced by whatever executingcommand sends tostdout.

• "..." indicates that within the double-quotes, only variable and command substitutions
should occur (i.e., no wildcard expansion).

• ’...’ indicates that within the single-quotes, no substitutions should occur (no wildcard,
variable or command substitution). Avoiding substitutions is the reason I told you that the
first argument togrep (the regular expression) should be enclosed in single-quotes.

As I mentionned, substitutions occur under the hood, after you enter the line at the prompt, and
before the shell executes the program specified. How can you tell whether the substitutions is what
you were intending? In general, how can you see what substitution is being performed? One trick
is to useecho. Recall thatecho simply sends its arguments tostdout. Hence, if the command
line contains substitutions,echo will send the result of the substitutions tostdout. For example:

babbage% ls

2000FA HW1 bin foo netids share test.sh~

2001SP HW2 f man netids~ test.sh tmp

babbage% echo H*

HW1 HW2

babbage% echo $HOME

/home/cs114

babbage% cat f1

this is a line

babbage% cat f2

H* $HOME

babbage% echo ‘cat f1‘

this is a line

babbage% echo ‘cat f2‘

HW1 HW2 $HOME

We see that the result of command substitution is further substituted, but only wildcard expansion
is performed. Understanding substitution is slightly tricky when you get to more complicated
examples, and some shells differ in such handling. Look into the man pages of the shell that
interests you.

3

