
Unix Tools Lecture 7
CS114 Fall 2002 Wednesday, October 16, 2002

More text processing

Recall from last time that when we execute a command, we can redirectstdout to file by ap-
pending> file. If you want toadd the output to the end of an existing file, you can use the>>

file redirection operator.

(What happens if you attempt to redirect to a file that already exists? In fact, it depends. You may
either get an error saying that the file already exists, or you may have the file deleted and replaced
by the output of the command. The behavior depends on the shell that you are using the access
Unix. We will see shells in the next lecture.)

Here are some interesting programs that can be used with redirection and pipelines:

• cat file1 file2 ... outputs all the files tostdout, concatenating them together.

• head file1 file2 ... lists the first 10 lines of each file tostdout (you can specify how
many lines to list by using a-number option).

• tail file1 file2 ... lists the last 10 lines of each file tostdout (you can specify how
many lines to list by using a-number option).

• less file displaysfile a screenful at a time.

For example, assume that you have a filef, for which you want the first ten lines in alphabetical
order containing a match forrp65. The following pipeline does this.

fgrep ’rp65’ f | sort | head

Since sorting can be quite time consuming, what you should do with the above is send the output
for a fileout, and compute the whole thing in the background. (Recall last lecture.):

fgrep ’rp65’ f | sort | head > out &

1

Most commands that expect input from a file will accept input fromstdin when you do not specify
a file (see the man pages for the command to confirm that this is the case). For example,grep will
behave this way. This allows you, for example, to perform the above transformation on many files
by usingcat to concatenate the files, before piping the result tofgrep:

cat f1 f2 f3 | fgrep ’rp65’ | sort | head

One question arises: what happens when you execute a command that reads its input fromstdin

(for example, grep without a filename), and you do not specify a redirection to read the input from
a file or from a pipe? Unix will ask you to enter the file by hand. This can be confusing, so I’ll
walk you through it. Let’s pick a simple example. The commandcat sends the contents of a file
to stdout. If you do not specify a filename, it will send the content ofstdin to stdout. If you
redirect the output to a filef, it will send the content ofstdin to f, as in

cat < f

However, if you execute the command above from the command line, as is, then Unix will simply
display a cursor and wait for you to type in something. In essence, it is asking for you to type
something directly to thestdin of the command, to type in a file by hand. So you can just type
away, pressing ENTER to start new lines, etc. Everything you type is fed to thestdin of cat.
To tell Unix you’re done entering the file, you press control-d (this is the end-of-file character, or
EOF). This will indicate to Unix that you have finished entering the type, and it continues executing
the command, in this case sending whatever you typed in to filef. So, if you try:

babbage% cat > f

this is a test

this is a line

this is another line

I’m done

babbage%

(pressing control-d after ”I’m done”), you get these lines in filef, which you can see by doing a
cat f:

babbage% cat f

this is a test

this is a line

this is another line

I’m done

2

Stream processing with sed

A very convenient utility to use in a pipeline issed, which is a program that can perform subsitu-
tions based on regular expression. There are two ways of invokingsed:

• sed -e ’script ’ file which applies the instructions inscript to the content offile
and sends the result tostdout, or

• sed -f scriptfile file which applies the instructions in the filescriptfile to the
content offile and sends the result tostdout.

If you do not specify a file from which to get input,sed will takes its input fromstdin.

A script is a set of instructions that you can use to indicate tosed what actions you want performed
on the file. Refer to the man pages forsed for a complete description of possible instructions. Here,
I will only describe one, namely a global form of regular expression substitution. The instruction:

s/regexp /substexp /g

will perform the substitution of any string matchingregexp with substexp . So, if you want to
replace every instance of, say,rp56 in a filef2 by <ric netid>, you could use:

sed -e ’s/rp65/<ric netid>/g’ f2

and if filef2 contains:

this is rp65 a line

this rp65 is also a line

we get the following:

babbage% sed -e ’s/rp65/<ric netid>/g’ f

this is <ric netid> a line

this <ric netid> is also a line

More complex substitutions can occur, and I’ll refer you again to the man pages forsed for more
information.

3

