
Unix Tools Lecture 2
CS114 Fall 2002 Wednesday, October 2, 2002

More on files and directories

Recall, last time we saw the following commands for dealing with directories:pwd, cd, ls.

The following commands are also useful when dealing with files and directories. Recall that when-
ever we talk about a file or a directory, it actually stands for a path to a file or directory.

• mkdir directory : createsdirectory

• rmdir directory : removesdirectory (only if it’s empty and you are not inside it)

• touch file : creates an emptyfile

• cat file : dumps the content offile

• rm file : removesfile

• mv oldname newname : renames a file (and moves it if names refer to different directories)

• mv file1 file2 ... directory : moves files into a directory

• cp oldname newname : copies a file

• cp file1 file2 ... directory : copies files into a directory

Some commands haveoptions, that affect the way they behave. Options are typically a letter
preceded by a-. For example, if you give the option-i to rm, that is, if you writerm -i file ,
the system will prompt you for confirmation before deleting the file. Some commands understand
many options. The commandls for instance, recognizes, among others, the option-F, which
makesls give you some indication of the type of each file (it adds a trailing/ at the end of every
directory), and also the option-a, which makesls displayeverythingin the directory, including
so-calledhiddenfiles or directory. A file or directory is hidden if its name starts with a period,
such as.i-am-hidden. Hidden files aren’t special in any ways, except thatls by default will not
list them. Typically, programs needed configuration files will make those files hidden, otherwise
they’d clutter up your home directory.

How do you learn and remember the various options that each command understand? You can look
at the online Unix documentation, available through a commandman. If you typeman command , it

1



will search for and display documentation oncommand . This information is called theman pages
of the command. Among other things, you will get a description of the arguments the command
expects, and the options it understands. (The commandman itself understanding different options,
you can always do aman man to find out.)

Commands are often built-in. Programs (or applications) are essentially commands stored on the
filesystem. You use a program just like you would a command, by specifying its name at the
prompt, along with possible arguments. By default, Unix will search for the program in some
directories it knows about (for instance,/bin, /usr/bin/, /usr/local/bin, etc) to attempt to
find a file matching the name you specify. If it cannot find one (or if it is not marked as executable,
which we will see in the next lecture), it reports an error. Otherwise, it starts the program.

To give you an example of a program, considerlynx, a web browser that you can use from a text-
only console. To start it, do eitherlynx or lynx URL . (lynx can be found in/usr/local/bin/.)
It can also be used noninteractively. If you trylynx -dump URL , it will dump the formatted
content of theURL on the screen. For more information onlynx, consult the man pages.

Since programs are just files, you can specify exactly where you the program you want to execute
is stored, by using a path. For example, considerpine, an email program you will be using. We
have installed pine in the directory of the course,∼cs114/bin/. To executepine, you need to
specify a path topine (either absolute or relative). Therefore, you can invokepine by writing
∼cs114/bin/pine at the Unix prompt. This by-passes the Unix search, and attempts directly to
execute the program you specify.

Unix security

Creating and deleting directories,and copying, moving and deleting files raises a question: how do
you keep other users from messing around with your files? Or the system files?

Recall that each user has an identity, given by its username. Moreover, each user can belong to one
or more groups. Membership in a group is set by the system administrator. For example, everyone
in this class is a member of groupcs114. I am also a member of groupcs114, and I may also be
a member of groupinstructors. Thus, you can be a member of more than one group.

The following commands give you identity information on yourself or someone else:

• id gives information on yourself

• id username gives information on userusername

• groups returns the groups your are a member of

• groups username returns the groups userusername is a member of

2



Permissions

Going back to security, each file and each directory has anowner(usually, the creator) and a group
associated with it.

There are three ways in which a file or directory can be accessed: read, write or execute. They
mean different things for files and for directories:

For a file For a directory
read (r ) view content list content
write (w) modify content create, remove, delete files in directory
execute (x) run program enter directory (viacd)

From a file or directory point of view, there are three kind of people: the owner, members of the
group, and others. Each file has read, write, and execute permissions (which I’ll abbreviate as r/w/x
permissions) for each of these kind of people: r/w/x permissions for the owner, r/w/x permissions
for members of the group, and r/w/x permissions for everyone else. This kind of information is
summarized by a string of 9 characters of the formxxxyyyzzz wherexxx represent the r/w/x
permissions for the owner,yyy the r/w/x permissions for the members of the group, andzzz the
r/w/x permissions for everyone else. Each set of r/w/x permissions is of the formabc, wherea is
eitherr or -, b is eitherw or -, andc is eitherx or - (you will sometimes sees instead ofx; for the
time being, you can assume it means the same asx). A - indicates simply that the corresponding
permission is denied.

Consider the following examples:

• rw------- only the owner can read or write

• rw-rw-rw- everyone can read or write

• ---rw---- all members of the group (excluding the owner) can read or write

• rwxrwx--- the owner and all members of the group can read, write, or execute

How do you check the permissions of a file or a directory? The commandls has an option that
shows you the permissions of the files and directories it lists. If you typels -l (the option-l
stands for ”long display”), you get output that looks like this:

babbage% ls -l

total 12

drwx------ 6 cs114 cs114 512 Feb 18 2001 2000FA

drwx------ 9 cs114 cs114 512 Oct 3 16:17 2001SP

3



drwxrwx--- 5 cs114 cs114 512 Oct 5 11:34 HW1

drwxr-xr-x 2 cs114 cs114 512 Oct 9 13:48 bin

drwx--x--- 3 cs114 cs114 512 Oct 1 2000 man

drwx--x--- 3 cs114 cs114 512 Oct 1 2000 share

The leftmost string of characters on each line gives you type and permission information for the
corresponding file. The first character is eitherd for a directory, or- for a file. (You will sometimes
seel as well; this says that file is a link to another file. We’ll cover links later in the course.) The
following 9 characters are the permissions, as described above. Later on the line, you get the owner
of the file or directory (cs114 in all the examples above), as well as the group associated with the
file or directory (cs114 as well in all the examples above). For example, you see that the owner has
read, write and execute permissions on directorybin/, while members of thecs114 group have
read and execute access, as do everyone else for that matter.

Changing owner and group

How do you change things such as the owner or group of a file or directory? Unix provides the
following commands:

• chown username arg1 arg2 ... changes the owner of the files/directoriesarg1 , ... to
username

• chgrp groupname arg1 arg2 ... changes the group associated with the files/directories
arg1 , ... togroupname

To recursively change the owner (or the group) of all the files in all the subdirectories of a given
directory, you can writechown username -R directory (similarly with chgrp).

Changing permissions

How do you change permissions on a file or a directory? The commandchmod does this for you.
The command is invoked as follows:chmod spec arg1 arg2 ..., changing the permissions
of arg1 , ... according to the specificationspec .

A specification has the form〈user〉〈mode〉〈permissions〉, meaning that you are changing according
to 〈mode〉 the permissions〈permissions〉 of the users〈user〉, where:

4



• 〈user〉 is any combination of the lettersu (the owner),g (the group), ando (all others). The
lettera (for all) can also be used. Usinga is like usingugo

• 〈mode〉 is either+ (adding permissions),- (removing permissions), or= (setting permissions)

• 〈permissions〉 is any combination of the lettersr, w, andx

For example,

• chmod a+r file adds read permissions to all (owner, group, others) to filefile

• chmod og-rwx file removes read, write and execute permissions for the group members
and everyone else to filefile

You can combine multiple specifications by separating them by a comma (without any space).
Hence,

• chmod ug+w,o-w file adds write permissions for the owner and the group, and removes
write permissions for everyone else, to filefile

As with chown andchgrp, you can recursively change permissions for all the files in all the sub-
directories of a directory by using the-R option. For example,chmod -R o-rwx foo.

5


