
Unix Tools Lecture 10
CS114 Fall 2002 Wednesday, October 23, 2002

Shell configuration and scripts

Last time, we learned about shells and, towards the end, about environment variables. We saw that
some environment variables are used to communicate with programs, other contain information
that helps the shell do its job (for example, thePATH environment variable). Some commands can
be affected by specific environment variables. To pick an example out of thin air, consider the
less command. If you look at the man pages forless, you see that if the environment variable
LESS is defined, it is used to communicate command line options passed automatically toless.
For example, the command line option-M makesless use a very verbose prompt as its command
prompt. To automatically haveless do this, you can use (in Bourne shells):

export LESS=-M

Since many programs have such conventions, it would be nice to have a place where all of these
configuration options can be specified. It turns out there are a few such places.

Every shell is set up to read from configuration files whenever it is started up. These configuration
files can, among other things, define environment variables (and local variables). Read the appro-
priate shell man pages for actual documentation. The shellbash reads the file.bashrc when it is
started, and when it is used as a login shell, it attempts to read.bash profile, .bash login, or
.profile (all in your home directory). The shelltcsh read the file.tcshrc (.cshrc if .tcshrc
doesn’t exist) in your home directory everytime it is started. Moreover, when it is started as the
login shell, it also reads the file.login in your home directory.

Those configuration files can contain any sequence of shell commands. Typically, what you find
in such files are environment variable settings (such as theLESS variable above.)

Another thing you may find arealiases. An alias is simply a name that you use as a command, but
thatexpandsinto a more complicated command before being executed. For example, in my case,
I always get confused byls: when I learned Unix originally, I was usinglc, another directory
listing program, to list my directories. On system wherelc is not available, I typically aliaslc
to meanls -F. In bash, I do this withalias lc=’ls -F’. Then, whenever I uselc args as a
command name, the shell translates it intols -F args . Here are the alias-related commands for
the Bourne shell family:

• alias lists all the aliases on the system

1



• alias name list the alias (if any) forname

• alias name =value sets an alias

• unalias name deletes an alias

For the C shell family, it’s similar:

• alias lists all the aliases on the system

• alias name list the alias (if any) forname

• alias name value sets an alias

• unalias name deletes an alias

Aliases are also standard things that occur in a shell configuration files. In fact, any shell command
can occur in a shell configuration file. You can put inecho commands to see the progress through
the configuration file as it is loaded.

Scripts

The example of shell configuration files given above is quite useful. The idea that we can put shell
commands all in one place and executed all at once is attractive. For instance, if you have the
same sequence of operations you want to perform on many files, it would be nice to put all those
operations in one place and invoke them repeatedly.

The example of shell configuration files is an instance of what is called ashell script. Shell scripts
contains sequences of commands executed by the shell. For the time being, we will understand a
shell script to be a sequence of shell commands, one per line. Here’s a shell script, a fairly simple
one at that (we’ll assume these lines have been put in a filetest.sh):

fgrep ’hi’ file1 > tmp1

fgrep ’hello’ file3 > tmp2

cat tmp1 tmp2 | sort

Executing this script will basically search for all the lines infile1containinghi, all the lines in
file2 containinghello, sort all those lines, and print them tostdout.

Before being able to execute a script, you need to prepare it first. To do that, you putas the first
line of the script, a line such as:

2



#!/bin/bash

Following the#! should be the path to the shell to use to execute this script. After you’ve added
this line, you turn the script into an executable file by changing its execute permission, as inchmod

u+x test.sh. Now you can simply invoke the script by using its name as a command, i.e. by
callingtest.sh. The effect of this will be to start the shell specified by the first line of the script,
and execute the content of the script.

You can redirect the standard input and standard output of a script as you would any other com-
mand, although it gets a bit touchy to understand how the commands in the script will behave with
respect tostdin. For example, every command of the script sending tostdout will send to the
stdout of the script, but every command reading fromstdin will require a different file.

3


