
Objects

Mini-Lecture 16

Thinking About Assignment 2

• A2: three color models
§ RGB: 3 ints 0 to 255
§ CMYK: 4 floats 0.0 to 100.0
§ HSV: 3 floats, mult. bounds
§ We could represent as lists

• Can get really confusing
§ Easy to mix-up models
§ Easy to go out of bounds

• We want custom types
§ One for each color model
§ Motivation for classes

id1rgb
id1

0 128
1 0
2 0

list

id2cmyk
id2

0 0.0
1 100.0
2 100.0

list

3 0.010/3/18 Objects 2

Classes are Customized Types

• Classes are any type not
already built-into Python

• Values look like dicts
§ Represent as a folder
§ Variables are named

10/3/18 Objects 3

Classes
• RGB
• CMYK
• HSV

Types
• int
• float
• bool
• str
• list
• dict

id2

red 255

green 128

blue 0

RGB

class name

Classes are Customized Types

• Classes are any type not
already built-into Python

• Values look like dicts
§ Represent as a folder
§ Variables are named

10/3/18 Objects 4

Classes
• RGB
• CMYK
• HSV

Types
• int
• float
• bool
• str
• list
• dict

id2

red 255

green 128

blue 0

RGB

class name

Class values are
called objects

Why Are They Better Than dicts?

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables
10/3/18 Objects 5

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

Why Are They Better Than dicts?

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables
10/3/18 Objects 6

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

Designed for the

purpose of safety

Using Classes in Python

• Modules provide classes
§ Import to use the class
§ Will show contents later

• Example: introcs
§ Color classes for A2:
RGB, CMYK, HSV

§ Geometry classes:
Point2, Point3

• Will make our own later

10/3/18 Objects 7

id1

x 2.0

y 3.0

z 5.0

Point3

class name

Constructor: Function to make Objects

• How do we create objects?
§ Other types have literals
§ Example: 1, 'abc', true
§ No such thing for objects

• Constructor Function:
§ Same name as the class
§ Example: Point3(0,0,0)
§ Makes an object (manila folder)
§ Returns folder ID as value

• Example: p = Point3(0, 0, 0)
§ Creates a Point object
§ Stores object’s ID in p

10/3/18 Objects 8

id2p
Variable
stores ID
not object

instantiated
objectid2

x 0.0

y 0.0

z 0.0

Point3

Constructors and Modules

>>> import introcs

>>> p = introcs.Point3(0,0,0)

>>> id(p)

10/3/18 Objects 9

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Shows the ID of p.

Actually a
big number

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• Like we saw with lists
§ Reason for using folders

10/3/18 Objects 10

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

Objects and Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Access: <variable>.<attr>
§ Example: p.x
§ Look like module variables

• Putting it all together
§ p = introcs.Point3(1,2,3)
§ p.x = p.y + p.z

10/3/18 Objects 11

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

Objects and Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Access: <variable>.<attr>
§ Example: p.x
§ Look like module variables

• Putting it all together
§ p = introcs.Point3(1,2,3)
§ p.x = p.y + p.z

10/3/18 Objects 12

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

5.0x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = cornell.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

10/3/18 Objects 13

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = geom.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

10/3/18 Objects 14

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6

CORRECT

x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = geom.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

10/3/18 Objects 15

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6 7.4

CORRECT

x x

Methods: Functions Tied to Objects

• Method: function tied to object
§ Method call looks like a function

call preceded by a variable name:
⟨variable⟩.⟨method⟩(⟨arguments⟩)

§ Example: p.distance(q)
§ Example: p.abs() # makes x,y,z ≥ 0

• Object acts like an argument
§ Distance p to q: p.distance(q)
§ Distance x to y: x.distance(y)
§ Different objects, different values

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

10/3/18 Objects 16

Strings Have Methods Too

>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
2
>>> s.index('e')
2
>>> count_str(s,'l')
2
>>> s.count('l')
2

10/3/18 Objects 17

Strings Have Methods Too

>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
2
>>> s.index('e')
2
>>> count_str(s,'l')
2
>>> s.count('l')
2

10/3/18 Objects 18

Strings Have Methods Too

>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
2
>>> s.index('e')
2
>>> count_str(s,'l')
2
>>> s.count('l')
2

10/3/18 Objects 19

Are Strings
objects?

Surprise: All Values are in Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 2.5
>>> id(x)

• But they are immutable
§ Contents cannot change
§ Distinction between value

and identity is immaterial
§ So we can ignore the folder

2.5x

2.5

id5

id5x

float

10/3/18 Objects 20

