Mini-Lecture 16

Objects

Thinking About Assignment 2

- **A2**: three color models
 - RGB: 3 ints 0 to 255
 - CMYK: 4 floats 0.0 to 100.0
 - HSV: 3 floats, mult. bounds
 - We could represent as lists
- Can get really confusing
 - Easy to mix-up models
 - Easy to go out of bounds
- We want custom types
 - One for each color model
 - Motivation for *classes*

rgb id1

emyk id2

10/3/18 Objects

Classes are Customized Types

 Classes are any type not already built-into Python

- Values look like dicts
 - Represent as a folder
 - Variables are named

Classes are Customized Types

 Classes are any type not already built-into Python Values look like dicts

Represent as a folder

Variables are named

Why Are They Better Than dicts?

- Can add new variables
- Does not check bounds of the content variables
- Variables fixed (sort-of)
- Possibly checks bounds of the content variables

Why Are They Better Than dicts?

- Can add new variables
- Does not check bounds of the content variables
- Variables fixed (sort-of)
- Possibly checks bounds of the content variables

Using Classes in Python

- Modules provide classes
 - Import to use the class
 - Will show contents later
- Example: introcs
 - Color classes for A2:RGB, CMYK, HSV
 - Geometry classes: Point2, Point3
- Will make our own later

Constructor: Function to make Objects

- How do we create objects?
 - Other types have literals
 - Example: 1, 'abc', true
 - No such thing for objects
- Constructor Function:
 - Same name as the class
 - **Example**: Point3(0,0,0)
 - Makes an object (manila folder)
 - Returns folder ID as value
- **Example**: p = Point3(0, 0, 0)
 - Creates a Point object
 - Stores object's ID in p

Constructors and Modules

>>> import introcs

Need to import module that has Point class.

>> p = introcs.Point3(0,0,0)

Constructor is function. Prefix w/ module name.

>>> id(p)

Shows the ID of p.

Object Variables

- Variable stores object name
 - Reference to the object
 - Reason for folder analogy
- Assignment uses object name
 - Example: q = p
 - Takes name from p
 - Puts the name in q
 - Does not make new folder!
- Like we saw with lists
 - Reason for using folders

Objects and Attributes

- Attributes are variables that live inside of objects
 - Can use in expressions
 - Can assign values to them
- Access: <variable>.<attr>
 - Example: p.x
 - Look like module variables
- Putting it all together
 - \blacksquare p = introcs.Point3(1,2,3)
 - p.x = p.y + p.z

Objects and Attributes

- Attributes are variables that live inside of objects
 - Can use in expressions
 - Can assign values to them
- Access: <variable>.<attr>
 - Example: p.x
 - Look like module variables
- Putting it all together
 - \blacksquare p = introcs.Point3(1,2,3)
 - p.x = p.y + p.z

Exercise: Attribute Assignment

p

• Recall, q gets name in p

• Execute the assignments:

>>>
$$p.x = 5.6$$

>>> $q.x = 7.4$

• What is value of p.x?

A: 5.6 B: 7.4 C: **id4** D: I don't know

id4 id4 id4 Point3 0.0

Exercise: Attribute Assignment

p

• Recall, q gets name in p

• Execute the assignments:

>>>
$$p.x = 5.6$$

>>> $q.x = 7.4$

• What is value of p.x?

A: 5.6
B: 7.4 **CORRECT**C: **id4**D: I don't know

id4 id4 id4 Point3 0.0 5.6

Exercise: Attribute Assignment

• Recall, q gets name in p

• Execute the assignments:

>>>
$$p.x = 5.6$$

>>> $q.x = 7.4$

• What is value of p.x?

A: 5.6
B: 7.4 **CORRECT**C: **id4**D: I don't know

Methods: Functions Tied to Objects

- **Method**: function tied to object
 - Method call looks like a function call preceded by a variable name:

```
⟨variable⟩.⟨method⟩(⟨arguments⟩)
```

- **Example**: p.distance(q)
- **Example**: p.abs() # makes $x,y,z \ge 0$
- Object acts like an argument
 - Distance p to q: p.distance(q)
 - Distance x to y: x.distance(y)
 - Different objects, different values

Strings Have Methods Too

```
>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
>>> s.index('e')
>>> count_str(s,'1')
>>> s.count('l')
```

Strings Have Methods Too

```
>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
>>> s.index('e')
>>> count_str(s,'1')
>>> s.count('1'
```

Strings Have Methods Too

```
>>> from introcs import index_str, count
>>> s = 'Hello'
>>> index_str(s,'e')
>>> s.index('e')
>>> count_str(s,'1')
>>> s.count('1'
```

Are Strings objects?

Surprise: All Values are in Objects!

- Including basic values
 - int, float, bool, str
- Example:

$$>>> x = 2.5$$

- But they are *immutable*
 - Contents cannot change
 - Distinction between *value* and *identity* is immaterial
 - So we can ignore the folder

