
Integrated Development

Mini-Lecture 10

Stepwise Refinement: Basic Principles

• Write Specifications First
Write a function specification before writing its body

• Take Small Steps
Do a little at a time; make use of placeholders

• Run as Often as You Can
This can catch syntax errors

• Separate Concerns
Focus on one step at a time

• Intersperse Programming and Testing
When you finish a step, test it immediately

9/17/18 Algorithm Design 2

Stepwise Refinement: Basic Principles

• Write Specifications First
Write a function specification before writing its body

• Take Small Steps
Do a little at a time; make use of placeholders

• Run as Often as You Can
This can catch syntax errors

• Separate Concerns
Focus on one step at a time

• Intersperse Programming and Testing
When you finish a step, test it immediately

9/17/18 Algorithm Design 3

Integrated
Development

Using Placeholders in Design

• Delay do anything not immediately relevant
§ Use comments to write steps in English
§ Add “stubs” to allow you to run program often
§ Slowly replace stubs/comments with real code

• Only create new local variables if you have to
• Sometimes results in creation of more functions

§ Replace the step with a function call
§ But leave the function definition empty for now
§ This is called top-down design

9/17/18 Algorithm Design 4

Function Stubs

Procedure Stubs

• Single statement: pass
§ Body cannot be empty
§ This command does nothing

• Example:
def foo():

pass

Fruitful Stubs

• Single return statement
§ Type should match spec.
§ Return a “default value”

• Example:
def first_four_letters(s):

return ' ' # empty string

9/17/18 Algorithm Design 5

Purpose of Stubs
Create a program that may not be correct, but does not crash.

Example: Reordering a String

• last_name_first('Walker White') is 'White, Walker'

def last_name_first(s):
"""Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in the form <first-name> <last-name>
with one blank between the two names"""
Find the first name
Find the last name
Put them together with a comma
return ' ' # Currently a stub

9/17/18 Algorithm Design 6

Example: Reordering a String

• last_name_first('Walker White') is 'White, Walker'

def last_name_first(s):
"""Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in the form <first-name> <last-name>
with one blank between the two names"""
end_first = s.find(' ')
first_name = s[:end_first]
Find the last name
Put them together with a comma
return first_name # Still a stub

9/17/18 Algorithm Design 7

Refinement: Creating Helper Functions

def last_name_first(s):
"""Returns: copy of s in the form
<last-name>, <first-name>
Precondition: s is in the form
<first-name> <last-name> with
with one blank between names"""
first = first_name(s)
Find the last name
Put together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
<first-name> <last-name> with
one blank between names"""
end = s.find(' ')
return s[:end]

9/17/18 Algorithm Design 8

Refinement: Creating Helper Functions

def last_name_first(s):
"""Returns: copy of s in the form
<last-name>, <first-name>
Precondition: s is in the form
<first-name> <last-name> with
with one blank between names"""
first = first_name(s)
Find the last name
Put together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
<first-name> <last-name> with
one blank between names"""
end = s.find(' ')
return s[:end]

9/17/18 Algorithm Design 9

Do This Sparingly
• If you might use this step in

another function later
• If implementation is rather

long and complicated

Example: Reordering a String

• last_name_first('Walker White') is 'White, Walker'

def last_name_first(s):
"""Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in the form <first-name> <last-name>
with one or more blanks between the two names"""
Find the first name
Find the last name
Put them together with a comma
return ' ' # Currently a stub

9/17/18 Algorithm Design 10

Testing last_name_first(n)
import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
9/17/18 Algorithm Design 11

Message will print
out only if no errors.

Quits Python
if not equal

Using Test Procedures

• In the real world, we have a lot of test cases
§ I wrote 20000+ test cases for a C++ game library
§ You need a way to cleanly organize them

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure

9/17/18 Algorithm Design 12

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

9/17/18 Algorithm Design 13

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

9/17/18 Algorithm Design 14

No tests happen
if you forget this

