
Testing

Mini-Lecture 9

Test Cases: Finding Errors
• Bug: Error in a program. (Always expect them!)
• Debugging: Process of finding bugs and removing them.
• Testing: Process of analyzing, running program, looking for bugs.
• Test case: A set of input values, together with the expected output.

def number_vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters"""
pass # nothing here yet!

9/14/18 Testing 2

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body.

Test Cases: Finding Errors
• Bug: Error in a program. (Always expect them!)
• Debugging: Process of finding bugs and removing them.
• Testing: Process of analyzing, running program, looking for bugs.
• Test case: A set of input values, together with the expected output.

def number_vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters"""
pass # nothing here yet!

9/14/18 Testing 3

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body.

Some Test Cases
§ number_vowels('Bob')

Answer should be 1
§ number_vowels('Aeiuo')

Answer should be 5
§ number_vowels('Grrr')

Answer should be 0

Representative Tests

• Cannot test all inputs
§ “Infinite” possibilities

• Limit ourselves to tests
that are representative
§ Each test is a significantly

different input
§ Every possible input is

similar to one chosen
• An art, not a science

§ If easy, never have bugs
§ Learn with much practice

9/14/18 Testing 4

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

9/14/18 Testing 5

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

9/14/18 Testing 6

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

• If in doubt, just add more tests
• You are never penalized for too many tests

CORRECT(ISH)

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker White') gives 'White, Walker'

9/14/18 Testing 7

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker White') gives 'White, Walker'

9/14/18 Testing 8

Look at precondition
when choosing tests

Unit Test: A Special Kind of Script

• Right now to test a function we do the following
§ Start the Python interactive shell
§ Import the module with the function
§ Call the function several times to see if it is okay

• But this is incredibly time consuming!
§ Have to quit Python if we change module
§ Have to retype everything each time

• What if we made a second Python module/script?
§ This module/script tests the first one

9/14/18 Testing 9

Unit Test: A Special Kind of Script

• A unit test is a script that tests another module
§ It imports the other module (so it can access it)
§ It imports the introcs module (for testing)
§ It defines one or more test cases

• A representative input
• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""

9/14/18 Testing 10

Testing last_name_first(n)
import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
9/14/18 Testing 11

Testing last_name_first(n)
import name # The module we want to test
import cornell # Includes the test procedures

First test case
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
9/14/18 Testing 12

InputActual Output

Expected Output

Testing last_name_first(n)
import name # The module we want to test
import cornell # Includes the test procedures

First test case
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
9/14/18 Testing 13

Message will print
out only if no errors.

Quits Python
if not equal

