Outcomes:

- **Competency** with basic Python programming
 - Ability to create Python modules and programs
- **Knowledge** of object-oriented programming
 - Ability to recognize and use objects and classes.
- **Knowledge** of scientific programming
 - Exposure to Numpy and other packages

Website:

Grading Policy

- There will be three assignments
 - Two smaller assignments, one larger
 - All will involve programming
- Must earn 85% to pass an assignment
 - Get two more attempts if you fail
 - But you must meet the posted deadlines!
- Must pass all three assignments
 - No exams; labs are not graded

Getting Started with Python

- Designed to be used from the “command line”
 - OS X/Linux: **Terminal**
 - Windows: **Command Prompt**
 - Purpose of the first lab
 - Once installed type “python”
 - Starts an interactive shell
 - Type commands at >>>
 - Shell responds to commands
 - Can use it like a calculator
 - Use to evaluate expressions

The Basics

Values

- **int** (integer):
 - **values**: ..., –3, –2, –1, 0, 1, 2, 3, 4, 5, ...
 - **operations**: +, −, *, /, **, unary –
 - **Principal**: operations on int values must yield an int
 - **Example**: 1 / 2 rounds result down to 0
 - Companion operation: % (remainder)
 - 7 % 3 evaluates to 1, remainder when dividing 7 by 3
 - Operator / is not an int operation in Python 3 (use // instead)

Type: Set of values and the operations on them

float (real number)

- **values**: approximations of real numbers
 - In Python a number with a “.” is a float literal (e.g. 2.0)
 - Without a decimal a number is an int literal (e.g. 2)
- **operations**: +, −, *, /, **, unary –
 - But meaning is different for floats
 - **Example**: 1.0 / 0.0 evaluates to 0.5

Type: Set of values and the operations on them

- **Exponent notation** is useful for large (or small) values
 - **Example**: 22.51e6 is 22510000
 - 22.51e-6 is 0.000002251

A second kind of float literal
Type: Set of values and the operations on them

- **Type boolean or bool:**
 - **values:** True, False
 - **operations:** not, and, or
 - not b: True if b is false and False if b is true
 - b and c: True if both b and c are true; False otherwise
 - b or c: True if b is true or c is true; False otherwise

- Often come from comparing int or float values

 - **Order comparison:**
 - i < j
 - i <= j
 - i >= j
 - i > j

 - **Equality, inequality:**
 - i == j
 - i != j

Expressions vs Statements

- **Expression**
 - Represents something
 - Python evaluates it
 - End result is a value
 - Examples:
 - 2.3
 - (3+5)/4

- **Statement**
 - Does something
 - Python executes it
 - Need not result in a value
 - Examples:
 - print "Hello"
 - import sys

Will see later this is not a clear cut separation

Variables (Section 2.1)

- A variable is
 - a named memory location (box),
 - a value (in the box)

- Examples
 - x = 5
 - Variable x, with value 5 (of type int)
 - area = 20.1
 - Variable area, w/ value 20.1 (of type float)

- Variables names must start with a letter
 - So 1e2 is a float, but e2 is a variable name

Variables and Assignment Statements

- Variables are created by **assignment statements**
 - Create a new variable name and give it a value
 - x = 5
 - the variable
 - This is a statement, not an expression
 - Tells the computer to DO something (not give a value)
 - Typing it into >>> gets no response (but it is working)
 - Assignment statements can have expressions in them
 - These expressions can even have variables in them
 - x = x + 2
 - the expression
 - the variable

Dynamic Typing

- Python is a dynamically typed language
 - Variables can hold values of any type
 - Variables can hold different types at different times
 - Use type(x) to find out the type of the value in x
 - Use names of types for conversion, comparison
 - type(x) == int
 - x = float(x)
 - type(x) == float

- The following is acceptable in Python:
 - >>> x = 1
 - x contains an int value
 - >>> x = 2.0
 - x now contains a float value

- Alternative is a statically typed language (e.g. Java)
 - Each variable restricted to values of just one type