
CS 1132 Fall 2016 Assignment 1a due 10/25 at 11:59 pm

Adhere to the Code of Academic Integrity. You may discuss background issues and general strategies with
others and seek help from course staff, but the implementations that you submit must be your own. In
particular, you may discuss general ideas with others but you may not work out the detailed solutions with
others. It is never OK for you to see or hear another student’s code and it is never OK to copy code from
published/Internet sources. If you feel that you cannot complete the assignment on you own, seek help from
the course staff.

When submitting your assignment, follow the instructions summarized in Section 4 of this document.

Do not use the break or continue statement in any homework or test in CS1132.

1 Pokemon Babies

Pokemon originally began as a video game starring 150 fictional creatures that you could catch, train, and
evolve into new creatures. Since then, the list of pokemon has grown to about 721 in the sixth generation of
the game. There are 18 that hatch from eggs, as shown below:

Pokedex Num Pokemon Name
172 Pichu
173 Cleffa
174 Igglybuff
175 Togepi
236 Tyrogue
238 Smoochum
239 Elekid
240 Magby
298 Azurill
360 Wynaut
406 Budew
433 Chingling
438 Bonsly
439 Mime Jr.
440 Happiny
446 Munchlax
447 Riolu
458 Mantyke

In the game, there is a pokedex—a kind of catalog—that provides information on each pokemon. Each
pokemon is listed by an index number, as seen in the left-hand column above.1

By the end of this assignment, you will have hatched eggs, trained pokemon, and made a Tyrogue evolve.
This requires using the built-in functions rand and fprintf, writing for loops, and creating, getting, and
setting values in 1-D arrays (i.e., vectors). You will also be able to create and run functions and scripts.

Download the files assignment1a.m and getPokeBabyName.m from the course website. Function getPokeBabyName

is completely implemented for your use. You will write three other functions from scratch and fill in the
script assignment1a. See the next section for the details.

1If you are interested, you can get more information about these pokemon at this URL:

http://bulbapedia.bulbagarden.net/wiki/Baby Pokemon.

1



2 Function and Script Explanations

2.1 Function getPokeBabyName

This function is given and should NOT be modified. You will not submit it as we will use our own copy
of the function to run your code. The function provides a mapping between the pokedex numbers and the
pokemon names given in the chart in section 1. Read the provided function: you should be able to write this
function yourself, but it is admittedly tedious to type in all 18 pokemon babies and is therefore provided for
your convenience. What you do need to do is make sure you know how to use the function. Below is the
description of the function:

function pokeBabyName = getPokeBabyName(pokedexNum)

% Returns the name of a pokemon baby given its pokedex number.

% pokedexNum - the index of a pokemon in the pokedex (a device used to

% provide information on the various pokemon in the game)

% pokeBabyName - the name of the pokemon associated with the given pokedex

% number. If the pokedex number does not match any pokemon

% baby, the name is set to ’Not Found’.

The code relies on an if statement to determine which pokemon name to return. However, the code can
alternatively be written using a construct called a switch statement. The switch statement is not a required
part of this course, but if you are interested in learning about the switch statement, read the section of code
that has been commented out in the provided function.

2.2 Function hatchEgg

The thing about pokemon eggs is that you never know what pokemon you are going to get! Implement the
following function:

function pokedexNum = hatchEgg()

% Returns the pokedex number of one Pokemon baby chosen randomly out of

% the 18 possibilities.

% pokedexNum - the index of the chosen pokemon in the pokedex

Start by creating an array with the pokemon index numbers of all 18 pokemon babies. Your code should
choose randomly and with equal likelihood one of those pokemon index numbers to return.

A long statement should be broken into multiple lines

Statements that are too long—require horizontal scrolling when reading on an editor or wrap to the next
line when printed—reduce the readability of a program. You should continue a too-long statement onto the
next line by using the ellipsis symbol ..., i.e., dot-dot-dot. Here is an example:

x= [3 4 9 4 ...

5 6 1 3 ...

4 8];

The single assignment statement above was broken into three lines. (That was just a demonstration; that
particular statement was not too long.) What is a too-long statement? You do not need to count—on the
Matlab editor, a faint vertical gray line on the right of the window marks the width of 74 characters.
Generally, your code should not go past the gray line.

Function comments

You should always document your code. When you write a function, the convention is that the file begins
with the function keyword, i.e., the function header is the first line in the file. Below that is the function

2



comments, also called the function specification. The function comments describe concisely the purpose
of the function and the input and output parameters. In this assignment, we provide the exact function
specification that you should use, so be sure to copy both the function header and the complete function
comment into the file that you will write and submit.

2.3 Script assignment1a

Follow the instructions written in the code documentation of assignment1a.m. Write the relevant code
underneath each commented section. It is possible that code from one question can be used in subsequent
questions (e.g., an array created in a prior question could potentially be used in the next few questions
without recreating the array each time).

Answer questions Q1.1 to Q1.3 in the assignment1a script now by writing code. These questions relate to
the hatchEggs function that you have just written and the given getPokeBabyName function. By answering
these questions, you are testing your function to make sure that it works as specified!

You will answer the remaining questions after implementing the relevant functions. Indeed, you will switch
back and forth between writing functions and calling them in the assignment1a script. Test each function

thoroughly after you have implemented it! This is standard practice and it will save you a lot of work in the
long run if you catch mistakes early.

The assignment1a script is divided into sections using the %% operator. When you are working on a
particular section, the background will be highlighted in yellow. If a section line appears while you are
typing, such as when you start a for loop, no worries - just finish off the loop structure by typing the end

keyword, and the line should go away. For your convenience, you can click on the Run Section button to
execute an individual part of the assignment. Click on the Run button to run the entire script from start
to finish. (You can also click Run and Advance repeatedly to sequentially execute each part.)

2.4 Function train

Every pokemon starts at level 1 with zero attack points and zero defense points. A pokemon can “train” to
level up and gain attack and defense points. The higher the number of points, the stronger the pokemon is.
Implement the following function:

function [finalAttackPts, finalDefensePts] = train(numLevels, ...

startAttackPts, startDefensePts)

% Increases a pokemon’s level by a specified number of levels. For each

% time that the pokemon levels up, the attack and defense points are each

% independently increased by a uniformly random integer value in [0..10],

% i.e., any integer in [0..10] is equally likely to occur.

% numLevels - the number of times that leveling up occurs

% startAttackPts - the attack strength that the pokemon already had

% before training

% startDefensePts - the defense strength that the pokemon already had

% before training

% finalAttackPts - the attack strength of the pokemon after training

% finalDefensePts - the defense strength of the pokemon after training

Answer questions Q2.1 to Q2.8 in the assignment1a script by writing code.

2.5 Function evolveTyrogue

Many pokemon are able to evolve into a different pokemon, but they occur through different means. Some
evolve at a particular level, some evolve after receiving special stones, and some never evolve at all. In
Tyrogue’s case, at level 20, it can change into one of three pokemon depending on its own attack and defense
statistics just when it is about to evolve. Implement the following function:

3



function [pokedexNum, pokeName, attackPts, defensePts] = evolveTyrogue()

% Trains a Tyrogue from level 1 to level 20 and determines whether it

% evolves into Hitmonlee, Hitmonchan, or Hitmontop:

% 106 - Hitmonlee - when attacks points are greater than its defense points

% 107 - Hitmonchan - when attack points are less than its defense points

% 237 - Hitmontop - when attack points are the same as its defense points

% pokedexNum - the index of the newly evolved pokemon in the pokedex (106,

% 107, or 237)

% pokeName - the name of the newly evolved pokemon (Hitmonlee, Hitmonchan,

% or Hitmontop)

% attackPts - the attack strength of the newly evolved pokemon

% defensePts - the defense strength of the newly evolved pokemon

The attack and defense strength of the newly evolved pokemon is the same as the attack and defense strength
of Tyrogue at the moment that it evolves.

Answer question Q3 in the script assignment1a.

3 Self-check list

The following is a list of the minimum necessary criteria that your assignment must meet in order to be
considered satisfactory. Failure to satisfy any of these conditions will result in an immediate request to
resubmit your assignment. Save yourself and the graders time and effort by going over it before submitting
your assignment for the first time.

Note that, although all of these are necessary, meeting all of them might still not be sufficient to consider
your submission satisfactory. We cannot list everything that could possibly be wrong with any particular
assignment!

∆ Comment your code! If any of your functions is not properly commented, regarding function purpose
and input/output arguments, you will be asked to resubmit.

∆ Suppress all unnecessary output by placing semicolons (;) appropriately. At the same time, make sure
that all output that your program intentionally produces is formatted in a user-friendly way.

∆ Make sure your functions’ names are exactly the ones we have specified, including case.

∆ Check that the number and order of input and output arguments for each of the functions matches
exactly the specifications we have given.

∆ Test each one of your functions independently, whenever possible, or write short scripts to test them.

∆ Check that your scripts do not crash (i.e., end unexpectedly with an error message) or run into infinite
loops. Check this by running each script several times in a row. Before each test run, you should type
the commands clear all; close all; to delete all variables in the workspace and close all figure
windows.

4 Submission instructions

1. Upload files assignment1a.m, hatchEgg.m, train.m, and evolveTyrogue.m to CMS in the submission
area corresponding to Assignment 1a before the deadline.

2. When the scores are released read the grader’s feedback carefully.

3. If you need to resubmit, fix all the problems and go back to Step 1! Otherwise you are done with this
assignment. Well done!

4


	Pokemon Babies
	Function and Script Explanations
	Function getPokeBabyName
	Function hatchEgg
	Script assignment1a
	Function train
	Function evolveTyrogue

	Self-check list
	Submission instructions

