
CS101J, Cornell 1

Overriding function equals

Chapter

a0	

Object	

equals(Object) …	

C	

equals(Object)	

/** = “Object ob has class C & equals this object */	

public boolean equals(Object ob)	

type must be Object.	

Check this property!	

c1.equals(new Integer(5)) is false	

c1	
 a0	

CS101J, Cornell 2

Overriding function equals

Chapter

a0	

Object	

equals(Object) …	

C	

equals(Object)	

/** = “Object ob has class C & equals this object */	

public boolean equals(Object ob)	

You get to
decide what

equals means

Reflexive: c1.equals(c1) is true.	

But it should be an equality relation!
For c1, c2, c3 not null and of the same class

Symmetric: c1.equals(c2) and���
 c2.equals(c1) yield same value.	

Transitive: If c1.equals(c2) and���
 c2.equals(c3) are true,���
 then so is c1.equals(c3).	

CS101J, Cornell 3

Specifying equals

Chapter

a0	

Object	

equals(Object) …	

C	

equals(Object)	

/** = “Object ob has class C & equals this object */	

public boolean equals(Object ob)	

Make specification abstract:	

in terms of the meaning of the class, not
always in terms of fields, which the user may
not know about.	

Example: String equality:	

/** = “ob is a String and contains the same���
 sequence of characters as this String”. */���
public boolean equals(Object ob)	

