
CS101J, Cornell 1

Procedure specifications

/** Javadoc comment */!
<method header> {!
 …!
}!

/** Set the title to t. */!
public void setTitle(String t)!
 {...}!

1. The spec explains what each parameter is
for (so, it must mention all of them).

2. The spec is a command to do something.

setTitle(“I want peace”);!

Set the title to “I want peace”; !

CS101J, Cornell 2

/** = “a, b, and c are in ascending!
 order”. */!
public static boolean areAscending(!
 int a, int b, int c) {!
 return a < b && b < c;!
}!

Function specifications

/** Return true if a, b, and c are!
 in ascending order. */!

A function call produces a value.	

The function spec should say what the function-
call value equals.	

CS101J, Cornell 3

Constructor specifications

/** Constructor: a new instance with!
 chapter number n, chapter title!
 t, and previous chapter null!
 */!
public Chapter(int n, String t)!
 {...}!

CS101J, Cornell 4

Good specifications

• Written before the method body

• Accurate and complete

•  Include preconditions —constraints on
the parameters that must be satisfied in a
call, constraints that the caller must be
aware of.

/** = the square root of r.!
 Precondition: r >= 0. */!
public double sqrt(double r)!
 { … }!

CS101J, Cornell 5

/** = “a, b, and c are in
ascending order”: a < b < c. */!
public boolean areAscending(!
 int a, int b, int c) {!
 return a < b && b < c;!
}!

Changing the spec

1.  Change the specification to say what the
method will now do.	

2.  Change the body to keep the specification
accurate.	

/** = “a, b, and c are in non-
descending order”: a <= b <= c.*/!
!
!
 return a <= b && b <= c;!

