
JUnit Testing

DrJava has built-in mechanism that makes it easy to create a class to maintain a suite of test cases and to run
all test cases whenever appropriate just by clicking a button. The mechanism, which is used in many interactive
development environments, is called JUnit.

We now show how to construct test cases using a JUnit tester.

Class Panda

In DrJava, we have a class Panda, each instance of which maintains information about a panda. To keep
things simple here, the class maintains only the panda’s name and its father, if the father is known. In a real
situation, much more information would be maintained. There is a constructor, two getter methods, and two
setter methods. They must all be tested, and we do this using a JUnit testing class that saves all test cases.

Creating a JUnit testing class

To create a JUnit class, select menu File item new JUnit test case…. At the prompt, type a class name for
this tester. We recommend the name of the class being tested followed by the word “Tester”. Click button OK.

The new class has been created. Save it in the same folder as class Panda.

The import statement indicates that a class TestCase appears in package junit.framework, and class
PandaTester extends TestCase. Several methods are inherited from class TestCase. We’ll show the use
of one of them later.

Class PandaTester comes with one procedure, TestX. As its comment says, we can replace the X by
our own name, and we replace it by ConstructorGetters.

We can have as many test procedures as we wish. We add a second one for testing the setter methods.

Writing a test method

Now let’s write the body of the procedure to test the constructor and getter methods. First, we need to create
some Panda objects; let’s use these two assignments:

Panda p1= new Panda("Shuaung", null);
Panda p2= new Panda("Lin", p1);

Note that we have created one without a father and one with a father in order to test these two different cases.

To test whether object p1 has been correctly created, we need to check that each field of p1 has the right
value. Inherited procedure assertEquals can be used for this purpose. This procedure tests whether its two
parameters are equal. The first parameter is the expected value, and the second is a value that is produced by the
method being tested.

Here, we write two calls on assertEquals, testing whether the getter methods in object p1 produce the
right value:

assertEquals("Shuang", p1.getName());
assertEquals(null, p1.getFather());

In the same way, we insert statements to test the getter methods of p2:

assertEquals("Lin", p2.getName());
 assertEquals(p1, p2.getFather());

Running the test cases

Running the test cases is easy. First, compile the program and wait for button Test in the right half of the
button bar of DrJava to become black. Then click it. The names of the procedures that begin with “test” appear
in green in the bottom pane, and there is a green bar labeled “Test Progress”. This means that executing calls on
the test procedures detected no errors.

To show what happens when there is an error, let’s change the expected value of the first call of as-
sertEquals, compile again, and click button Test. Now, the name of the test procedure appears in red, mean-
ing that an error was detected, and the offending call on assertEquals is highlighted.

JUnit Testing

We fix the error, compile, and test again. Now the tests work.

Testing the setter methods

We test the setter methods in the same way, putting the test cases —implemented in the assertEquals
calls— in procedure testSetters. We write code to create one panda. And we write code to call each setter
method and check whether it sets the field properly. Note that we make panda p1 be its own father. It’s ok, it’s
just for test purposes.

Panda p1= new Panda("Shuang", null);

p1.setName("Harry");
assertEquals("Harry", p1.getName());

p1.setFather(p1);
assertEquals(p1, p1.getFather());

Now compile and run the suite of test cases by clicking button Test. Voila! Everything is alright.

A few comments

A few comments are in order.

1. First, there is no need to put a specification on these test procedures, as long as the name of the procedure
gives some indication of what is being tested.

2. Second, every method whose names begins with test will be called when button Test is clicked.

3. Third, note that there are many assertEquals procedures, one for each primitive type and one for
each class type as well. You don’t have to think about which one you are calling; just write the calls.

4. Fourth, in a call of assertEquals, the expected value is the first argument and the computed value,
which should equal the expected value, is the second argument.

5. Fifth, how many different test procedures you write is up to you. Writing one test procedure for each
method to be tested would be too much work. Don’t do it! On the other hand, putting all test cases in one
test procedure can make that test method too long and unwieldy. Don’t do it!

 Instead, try to find a proper balance, by placing methods to be tested into logical groups —for example,
getter methods, setter methods— and writing a test procedure for each group, so that no test procedure is
too long and that they are all easily maintained.

