
The assignment statement

 1

The assignment statement is used to store a value in a variable. As in most programming languages these
days, the assignment statement has the form:

 <variable>= <expression>;

For example, once we have an int variable j, we can assign it the value of expression 4 + 6:

 int j;
j= 4+6;

As a convention, we always place a blank after the = sign but not before it. You don’t have to follow this
convention. Our reasons for it are explained on p. 27 of Gries/Gries.

Once we have variables with values, we can use those variables in expressions. For example, we can evalu-
ate the expression consisting simply of j, or the expression 2*j, and we can store the value of expression j+1
in another variable k:

 j
 2*j
 int k;
 k= j + 1;
 k

You must memorize how the assignment statement is executed, or carried out. If asked, you should say:

 Evaluate the <expression> and store its value in the <variable>.

Please memorize this definition of how to execute the assignment statement. In order to be sure that you under-
stand it, we execute a series of assignments, showing how the variables change.

Here’s variables j and k, with the values computed by what we have done so far. We now execute a se-
quence of three assignments. Add 2 to j and store the result in j. subtract k from j and store the result in k,
and store 0 is in j.

 j= j + 2;
 k= j – k;
 j= 0;

As we carry out the assignments, we change the values of the variables. We do not draw the variables again.
There is only one variable j, and its value is changed whenever j is assigned a new value.

The initializing declaration

We can abbreviate a declaration of c followed by an assignment of 25 to it, using an initializing declaration:

 int c= 25;

Actually, any expression may be used —the expression need not be a constant.

It is important to realize that this is simply a combination of a declaration and an assignment. Writing two
such initializing declarations for the same variable will not work because only one declaration per variable is
allowed.

 int m= c+1;
 int m= 45; // illegal because m has already been declared

The types of variable and expression must match

In a Java assignment, the types of the variable and expression must match. For example, if one is a boole-
an, the other must be also, and if one is a String, the other must be a String. This is a consequence of the
strong typing principle.

For numeric types, there is a bit more leeway. You know that there are types byte, short, int, and
long which have increasingly larger sets of values, and there are two floating point, or real-number, types,
float and double. These move from the so-called narrowest type byte to the widest type, double.

The assignment statement

 2

The rule for an assignment of an expression that is a number is that the type of the variable has to be at least
as wide as the type of the expression.

For example, if we have, if we have a byte variable b and an int variable i, both of which contain 0, it is
legal to assign b to i but illegal to assign i to b.

byte b= 0;
int i= 0;
i= b;
b= i; // illegal

The reason for the rule should be clear. Assigning a wider-type value to a narrower-type variable may lose in-
formation or result in overflow of some sort. For example, how could 6000 be stored in a byte variable?

You might think that Java would allow an assignment of an int to a byte but would complain at runtime if
the int value were too big. However, this would violate the strong typing principle, as designed in Java.

