[ecture 9

Exceptions

Types of Errors in Java

Syntactic Errors

Runtime errors

e Can check at compile time

* Bad use of “grammar”

 Examples:

2/22/13

Lack of semicolon
Unknown method or variable

Use of method not in the
apparent type of variable

Exceptions

Can only check at run time

Generally have to do with
contents (not type) of variable

Examples:
= Variable unexpectedly null
= Bad downward casts

= Method call that violates the
parameter preconditions

Exceptional Circumstances

/** Yields: the decimal number represented by s. */
int parseInt(String s) { ... }
e ...but what if s 1s “bubble gum™?

/** Yields: the decimal number represented by s, or —1
* if s does not contain a decimal number. */
e _..butwhatif sis “—17?

/** Yields: the decimal number represented by s
* Precondition: s contains a decimal number. */
e ...but what if s might not, sometimes?

* Somehow, we have to be able to deal with the unexpected case

2/22/13 Exceptions

Dealing with Exceptional Circumstances

/** Yields: the decimal number * How to read a number from a file
* pepresented by s. (in 14 easy steps):
* Pre: § contains a number. */ 1. Open the file |
int parseInt(String s) { ...) 2. If the file doesn’t exist, ...
3. If there was a disk error, ...
/** Yields: “s contains a number.” */ 4. Read a line from the file.
boolean parseableAsInt(String s) { ... } 5. [If the file was empty, ...
6. If there was a disk error, ...
e« Now we have to write: 7. Convert string to a number.
if (parseableAsInt(someString)) { 8. If the string is not a number, ...
. . 9. If we have run out of memorys, ...
i = parselnt(someString); 10. Close the file.
} else { 11. If there was a disk error, ...
// do something about the error g g: Common Outcome
} 14. 1ft Weary programmers write
code that ignores errors.
2/22/13 Exceptions

There has to be a better way!

4

Exception Handling

/** Parse s as a signed decimal integer.

* Yields: the integer parsed

* Throws: NumberFormatException is s not a number */
public static int parseInt(String s) ...

* What happens when parselnt finds an error?
= Does not know what caused the error
= Cannot do anything intelligent about it.
= “throws the exception” to the calling method
* The normal execution sequence stops!

2/22/13 Exceptions

Recovering from Exceptions

 try-catch blocks allow us to recover from errors
= Do the code that is the try-block

= Once an exception occurs, jump to the catch

* Example:
might throw a NumberFormatException
try {
1= Integer.pa,rselnt(someString); tells Java to handle N.F.E.s here

System.out.printin(“The number is: ” + i);
} catch (NumberFormatException nfe) {
System.out.printin(“Hey! That is not a number!”)

executes if the exception happens

2/22/13 Exceptions 6

Exceptions in Java

* Exceptions are instances of class Throwable
e This allows us to organized them in a hierarchy

@105dc
Throwable
“/ by zero” problems you | Throwable problems you
____________________________ might want probably can’t
Throwable() Throwable(String) to deal with / \ fix anyway
ctMessage /
5 gel Exception Error
Exception 7\
Exception() Exception(String) RuntimeException
RuntimeException f
Runtime...() Run...(String) ArithmeticException

ArithmeticException

Arith...() Arith...(String) ~ Bxceptions

Creating Exceptions

public static void foo() { public static void foo() {
intx=5/0; throw new
Exception(“I threw it”);
))
Java creates Exception You create Exception
for you automatically manually by throwing it

2/22/13 Exceptions 8

Why So Many Exceptions?

public static int foo() { What is the value foo()?
int x =0;

try { A
throw new RuntimeException();
X =R;

o value. It stops!
: I don’t know

X =3

B
C:
} catch (RuntimeException e) { D
E

)

return Xx;

2/22/13 Exceptions

Why So Many Exceptions?

public static int foo() { What is the value foo()?
int x =0;

try { A
throw new RuntimeException();
X =R;

o value. It stops!
: I don’t know

X =3

B
C:
} catch (Exception e) { D
E

)

return Xx;

2/22/13 Exceptions

Why So Many Exceptions?

public static int foo() { What is the value foo()?
int x =0;

try {
throw new RuntimeException();

X =R;

} catch (ArithmeticException e) {

ZUJ[\)O

o value. It stops!
X =&

} I don’t know

A
B:
C:
D
E:
return Xx;
) < Java uses real type

to match Exceptions

2/22/13 Exceptions

Exceptions and the Call Stack

e Call: 02 /** Illustrate exception handling */
Ex.first(; 03 public class Ex {

04 public static void first() {
e OQOutput: 05 second();

06]

ArithmeticException: / by zero

07
at Ex.third(Ex.java:13) . o
. 08 public static void second() {
at Ex.second(Ex.java:9) 09 third();
at Ex first(Ex.java:5) 10)
11
@4elal 12 public static void third() {
ArithmeticException 13 intx=5/0;
14 }
“/ by zero”
15 }

2/22/13 Exceptions

12

Exceptions and the Call Stack

e Call: 02 /** Illustrate exception handling */
Ex.first): 03 public class Ex {
04 public static void first() {
* Output: 05 second();
ArithmeticException: I threw it 06)
at Ex.third(Ex.java:13) v’ . o
08 public static void second() {
at Ex.second(Ex.java:9) 09 third();
at Ex first(Ex.java:5) 0)
11
@4e0al 12 public static void third() {
ArithmeticException 13 throw new ArithmeticException (“I threw it”);
“I threw 1t” ke }
15 }

2/22/13 Exceptions 13

Creating Your Own Exceptions

/** An instance is an exception */ This 1s all you need
public class OurException extends Exception { = No extra fields

/** Constructor: an instance with message m*/ = No extra methods

public OurException(String m) { = Just the constructors

super(m);

/** Constructor: an instance with no message */
public OurException() {
super();

}

2/22/13 Exceptions 14

Exception Hierarchy

Throwable

Exception

/

FileNotFoundE.

problems you probably cannot
might want deal with anyway
to deal with /
Error

problems you

NN

I0Error AssertionError

problems you can prevent

EndOfFileR. RuntimeException < by coding properly

UnsupportedAudioFileE. / 'T\ \\

... (all others) ...

ArithmeticE. |

checked

exgeptions Exceptions

IndexOutOfBoundsE.
ClassCastE.

unchecked
exceptions

throws and Checked Exceptions

e Call: 02 /** Illustrate exception handling */ Will not
Ex first(); 03 public class Ex { compile yet!
04 public static void first() throws OurException {
e OQOutput: 05 second();
OurException: Whoal! 06)
at Ex.third(Ex.java:13) v . o .
08 public static void second() throws OurException {
at Ex.second(Ex.java:9) 09 third):
at Ex.first(Ex.java:d) 0)
11
throws clauses are required) 12 public static void third) throws OurException {
because OurException, 13 throw new OurException(“Whoa!”);
unlike ArithmeticException, 14 }
Qs a “checked exception.” p 151

2/22/13 Exceptions 16

throws and Checked Exceptions

public class Ex {
public static void first() {
try {
second();
} catch (OurException ae) {
System.out.println(“Caught it: " + ae);
}

System.out.printin(“Procedure first done.”);

}

public static void second() throws OurException {
third(Q;

}

public static void third() throws OurException {
throw new OurException(“an error”);

}

%/ 22/13 Exceptions

e throws is needed if

= The method itself throws
checked exception

= The method calls a
method that throws a
checked exception

e throws is not needed if

= All checked exceptions
are caught

= Any uncaught exceptions
are unchecked exceptions

17

Exceptions and the Java API

e Java API tells which methods throw exceptions
* Look at the method description
= Will list types of exceptions thrown and reason

 Examples:

" java.lang.String
e charAt () may throw IndexOutOfBoundsException
e endsWith () may throw NullPointerException

" java.lang.Double
e parseDouble () may throw NumberFormatException

e compareTo () may throw ClassCastException

2/22/13 Exceptions

18

