[ecture 8

Object Oriented Design

The Challenge of Making Software

e Did a lot of JMan for you
= Classes already completed
= Detailed specifications

= Lengthy instructions
* You just “fill in blanks”

e The “Real World”

= Vague specifications

" Up) (Down) (Left) (Right) = Unknown # of classes

Use the four buttons to direct J*Man (the star- = EVGI'YthiIlg fI'OIIl scratch

like piece) to capture the other colored pieces.
J*Man can capture:

a green piece if he is yellow, ¢ Where dO yOu Start?

a yellow piece if he is red,

2/18/13 OO Design 2

Software Patterns

e Pattern: reusable solution to a common problem
= Template, not a single program
= Tells you how to design your code

= Made by someone who ran into problem first

* In many cases, a pattern gives you the interface
= List of headers for the public methods ,

. . . Just like

= Specification for these public methods this course!

" Only thing missing i1s the implementation

2/18/13 OO Design 3

Example Pattern: I/O Streams

Challenge: want to get * From a file:
input from somewhere -
= Are these cases different? a -
= Or do they have a pattern? Adobe
* From the keyboard: * From the network

2/18/13 OO Design

Example Pattern: I/O Streams

e InputStream: Read-only list of bytes (0..255)

= Like an array, but can only read once

= Once you read a byte, go to the next one

72

101

108

108

157

32

65

108

108

)

Read

e OutputStream: Like InputStream, but write-only

2/18/13

OO Design

5

Example Pattern: I/O Streams

public class InputStream { public class OutputStream {
/** Yields: next byte (0..255) /** Writes a byte to the stream
* in stream or -1 if empty */ * Pre:bisinrange 0..255 */

public int read() throws IOE{ public void write(int ¢) {

} }

/** Shuts the input stream /** Shuts the input stream
* down (close file, disconnect * down (close file, disconnect
* network, etc.) */ * network, etc.) */

public void close() throws IOE { public void close() throws IOE {

} }
} }

2/18/13 OO Design 6

Example Pattern: I/O Streams

Challenge: want I/O stream for data other than bytes

e Text: e Sound:
-igix
ABCD EFGH |J KLM \N ;e:tﬂ‘":;w\@:m: ITUDISO | % BR[| Q QG| kw3 b o | ::ﬁ:ﬂ\;ﬂ:ﬁ[
OPQRSTUVWXYZA T | -
abcdefghijklmnopgr
stuvwxyzadéideou |]
1234567890($£€.,!?) " | | |
e Images e General Objects
@105dc
X double m
A
Point2d() Point2d(double, double)
getX() getY()
setX(double) setY(double)

2/18/13

OO Design

How Many Classes Do We Need?

2/18/13

* Source:
= Keyboard
= File
= Network
e Data Type:
= Text
= Images
= Sound
= Objects

OO Design

3x4 = 12 Classes!

Need 3 more every time
we add a new data type

Must be a better way!

Example Pattern: Decorators

public class Decorator {
private Object original;
public void method() {

doSomethingNew();
original.method();
New }
Functionality }
Decorator ___ Original Original
Reques’> . Functionality > Obi
Object ject

2/18/13 OO Design

Decorators and Java 1I/0

e Java I/O works this way.
= Start with basic Input/OutputStream
= Determined by source (keyboard, file, etc.)
= Add decorator for type (text, images, etc.)

* You did this in the lab on File I/O

FileInputStream input = new FileInputStream(“myfile.txt”);
BufferedReader reader = new BufferedReader(input);

// Read a line of text
String line = reader.readLine()

2/18/13 OO Design

10

Architecture Patterns

e Essentially same idea as software pattern
" Template showing how to organize code

= But does not contain any code itself

* Only difference 1s scope
= Software pattern: simple functionality
= Architecture pattern: complete application

e Large part of the job of a software architect

= Know the best patterns to use 1n each case

= Use these patterns to distribute work to your team

2/18/13 OO Design

11

Model-View-Controller Pattern

Controller Calls the
® Updates model in methods of
~ response to events
® Updates view with ‘\
model changes

2/18/13 OO Design 12

TemperatureConverter Example

* Model: (TemperatureModel.java)
= Stores one value: fahrenheit

= But the methods present two values

* View: (TemperatureView java)
= Constructor creates GUI components
= Recieves user input but does not “do anything”

. . (TemperatureConverter.java)

= Main class: instantiates all of the objects

= “Communicates’” between model and view

2/18/13 OO Design

13

TemperatureConverter Example

O O O Temperature Converter

VleW ’ Farenheit | 45.30:‘ Centigrade 7.39 '
Controller TemperatureConverter

@105dc

TemperatureModel

farenheit | 32.0

Model double

getFarenheit() setFarenheit(double)
getCentigrade() setCentrigrade(double)

2/18/13 OO Design

14

TemperatureConverter Revisited

> o

Model

2/18/13

O O O Temperature Converter

[
’ Farenheit | 45.30,| Centigrade 7.39 ‘

1

TemperatureConverter

@105dc

TemperatureModel

farenheit | 32.0

getFarenheit() setFarenheit(double)
getCentigrade() setCentrigrade(double)

OO Design

15

Advantages of This Approach

View

Another

IERREEREE RS R SRR RS RR SRS
SERRRRXRERXXRRXERRERREERRTRREE
I 3EEEEEELEEEEEITIITIEE 3333333
PR

-
et 4343 on on enimd o

i XX -

R X

RE RN R ORI
K 94940

.?ftttxt.”V.
XX B HXHX XA RHXXA e 108 amrord on
A A A AT R R

333333333333333+
1| B ERT -
CESREREELRLEREET
+EELIILIIIIIIIIIT
T T T T T

i
W
o= |
U
4
o
J

16

OO Design

2/18/13

Beyond Model-View-Controller

* MVC is best pattern for offline programs
= Networked get more complex

e Client-Server
= Client runs on your computer

= Client connects to remoter server

e Three-Tier Applications
= Client-Server-Database Client(s)

AN A Eb 4
= Standard for web applications Server(s)

... and many others
Database(s)

2/18/13 OO Design 17

You Can Even Mix and Match

2/18/13 OO Design 18

