
9/23/12	

1	

The Challenge of Making Software	

•  Did a lot of JMan for you	

§  Classes already completed	

§  Detailed specifications	

§  Lengthy instructions	

§  You just “fill in blanks”	

•  The “Real World”	

§  Vague specifications	

§  Unknown # of classes	

§  Everything from scratch	

•  Where do you start?	

•  Pattern: reusable solution to a common problem	

§  Template, not a single program	

§  Tells you how to design your code	

§ Made by someone who ran into problem first	

•  In many cases, a pattern gives you the interface	

§  List of headers for the public methods	

§  Specification for these public methods	

§ Only thing missing is the implementation	

Software Patterns	

Just like	

this course!	

Example Pattern: I/O Streams	

•  InputStream: Read-only list of bytes (0..255)	

§  Like an array, but can only read once	

§ Once you read a byte, go to the next one	

	

•  OutputStream: Like InputStream, but write-only	

72	
 101	
 108	
 108	
 157	
 32	
 65	
 108	
 108	
 …	

Read	

Example Pattern: I/O Streams	

public class InputStream {
 /** Yields: next byte (0..255)
 * in stream or -1 if empty */
 public int read() throws IOE{
 …
 }
 /** Shuts the input stream
 * down (close file, disconnect
 * network, etc.) */
 public void close() throws IOE{
 …
 }
}

public class OutputStream {
 /** Writes a byte to the stream
 * Pre: b is in range 0..255 */
 public int write() throws IOE{
 …
 }
 /** Shuts the input stream
 * down (close file, disconnect
 * network, etc.) */
 public void close() throws IOE{
 …
 }
}

Example Pattern: I/O Streams	

	
Challenge: want I/O stream for data other than bytes	

•  Sound:	

	

•  General Objects	

	

	

	

	

	

	

@105dc	

x 0.0

y 0.0

getX()
setX(double)

Point2d	

double

double

getY()
setY(double)

Point2d() Point2d(double, double)

•  Text:	

•  Images	

Object stored	

as a field	

New	

Functionality	

Example Pattern: Decorators	

public class Decorator {
 private Object original;
 public void method() {
 doSomethingNew();
 original.method();
 }
}

Original	

Object	

Decorator	

Object	

Request	
 Original	

Functionality	

9/23/12	

2	

Decorators and Java I/O	

•  Java I/O works this way.	

§  Start with basic Input/OutputStream	

§  Determined by source (keyboard, file, etc.)	

§  Add decorator for type (text, images, etc.)	

•  You did this in the lab on File I/O	

FileInputStream input = new FileInputStream(“myfile.txt”);
BufferedReader reader = new BufferedReader(input);

// Read a line of text
String line = reader.readLine()	

Architecture Patterns	

•  Essentially same idea as software pattern	

§  Template showing how to organize code	

§  But does not contain any code itself	

•  Only difference is scope	

§  Software pattern: simple functionality	

§ Architecture pattern: complete application	

•  Large part of the job of a software architect	

§ Know the best patterns to use in each case	

§ Use these patterns to distribute work to your team	

Model	

• 	
Defines and
	
manages the data	

• 	
Responds to the
	
controller requests	

View	

• 	
Displays model to
	
the player	

• 	
Provides interface
	
for the controller	

Controller	

• 	
Updates model in
	
response to events	

• 	
Updates view with
	
model changes	
	

Model-View-Controller Pattern	

Calls the
methods of	

•  Model: (TemperatureModel.java)	

§  Stores one value: fahrenheit	

§  But the methods present two values	

•  View: (TemperatureView.java)	

§  Constructor creates GUI components	

§  Recieves user input but does not “do anything”	

•  Controller: (TemperatureConverter.java)	

§ Main class: instantiates all of the objects	

§  “Communicates” between model and view	

TemperatureConverter Example	

View	

Model	

TemperatureConverter	
Controller	

TemperatureConverter Example	

	

	

	

	

	

	

@105dc	

farenheit

getCentigrade()

TemperatureModel	

double

setCentrigrade(double)
getFarenheit() setFarenheit(double)

32.0

Beyond Model-View-Controller	

•  MVC is best pattern for offline programs	

§ Networked get more complex	

•  Client-Server	

§  Client runs on your computer	

§  Client connects to remoter server	

•  Three-Tier Applications	

§  Client-Server-Database	

§  Standard for web applications	

•  … and many others	

Client(s)	

Server(s)	

Database(s)	

