
9/23/12	

1	

The Limitations of JFrame	

•  JFrame is just a Window	

§  Can resize it 	

§  Can close it	

§  Not much else	

•  To do more, you need ���
GUI components	

§  Items inside a JFrame	

§  Ex: Buttons, Text Boxes	

•  Two main Java packages	

§  java.awt: “old GUI”	

§  javax.swing: “Swing GUI”	

JTextField	

JLabel	

Swing Components	

JButton: a pushbutton that can

be clicked by mouse	

JCheckbox: can be on (true) or

off (false)	

JComboBox: a popup menu of

user choices	

JLabel: a text label	

JList: scrolling list of user-

chooseable items	

JScrollbar: a scroll bar	

JTextField: allows editing of a

single line of text	

JTextArea: multiline region for

displaying and editing text	

JPanel: used for containing and
grouping components	

JDialog: window used for user
input	

JFrame: top-level window with
frame and border	

…	

Buttons	
 List	

Slider	

Main Challenges in GUI Applications	

Layout	

•  Arranging items the screen	

§  Java has many components	

§  But where do they go?	

•  Challenge: Resizing	

§  Want components to “behave

nicely” as you resize	

§  Change size of components	

§  Change padding in between	

•  LayoutManagers do both	

Input Handling	

•  Many types of input	

§  button pushed	

§  text typed	

§  mouse clicked …	

•  Want app to react to input	

§  Otherwise GUI looks pretty,

but does nothing	

•  Main focus of GUI code	

BoxLayout: The Best for Beginners	

•  BoxLayout	

§  Arranges components in line	

§  No wrap (like FlowLayout)	

§  Either horizontal/vertical	

•  Box: JPanel w/ BoxLayout	

§  Box b1= new

Box(BoxLayout.Y_AXIS);	

§  Makes layout quick	

•  Demo: BoxGrouping.java 	

•  Nested boxes	

§  Three vertical boxes	

§  Inside horizontal box	

b1	
 b2	
 b3	

Nesting Layouts	

•  Want more interesting layouts	

§  Idea: nest layouts in each other	

§  Can get fine padding control	

•  Useful class: JPanel	

§  Invisible component 	

§  Container for other components	

§  Can take a LayoutManager	

•  Demo: PanelGrouping.java	

JPanel	

JPanel	

Traditional Programming	

•  Have a “main” method	

§  Call in Interactions pane	

§  Call in JUnit test	

§  …somewhere else?	

•  Other methods are helper
methods to “main” one	

•  Big reason for DrJava	

§  Usually only one “main”	

§  Interactions pane allows

all methods to be “main”	

“main”	

helper 1	

helper 3	
helper 2	

Program ends when
“main” is done	

9/23/12	

2	

Listeners	

•  A Listener is a class with
methods to respond to input	

§  ImageProcessor in A6	

§  Each method is a GUI button	

§  Support other types of input	

•  Program registers Listeners
with an event type	

§  Event loop finds a Listener

for the current event type	

§  Calls a Listener method	

§  Event is passed as argument	

	

while (JFrame is showing) {
 Check for user input;
 Generate event for input;
 ????
 ????
}

while (JFrame is showing) {
 Check for user input;
 Generate event for input;
 Find a Listener for this event;
 Call a method in this Listener;
}

Starts	

Java provides this loop.	

You do not write it.	

Event-Driven Programming	

Application	

Event���
Loop	

View	

	

	

	

	

	

	

@105dc	

Listener	

method(Event)

Listener	

registers itself	

(added to list)	

generates event e	

calls method(e) on listener	

•  JFrame has to know	

§  Type of the Listener	

§  Name of the method	

•  You did not write JFrame!	

Solution: Apparent Types	

•  Java provides a Listener type	

§  Has the method already in it	

§  Subclass this as your own class	

§  Override method for your usage	

•  View uses the Listener type	

§  Allows it to call the method	

§  Uses your version of method ���

(bottom-up rule)	

•  Designed to be overridden…	

	

	

	

	

	

	

@105dc	

Listener	

method(Event)

MyListener	

method(Event)

Provided by Java	

Used by View as	

the apparent type	

Defined by you to	

override method	

Abstract Classes: Made to be Overridden	

•  Abstract method	

§  Has the method header	

§  But does not have body!	

§  Example: Piece.java	

•  Why do this?	

§  Will use Piece for the

apparent type (variable)	

§  But Piece will never be

the real type of anything	

•  Artifact of static typing	

	

public class Piece {
 …
 // Abstract
 public abstract void �
 act(JManBoard board);
}

public class JMan {
 …
 // IMPLEMENTATION
 public void act(JManBoard board) {
 …
 }
}
	

Listeners are actually Interfaces	

•  Like an abstract class	

§  But all methods abstract!	

§  And cannot have fields	

•  What is the difference?	

§  Don’t extend an interface	

§  You implement one	

•  What the heck????	

§  Major topic in CS 2110	

§  Not needed for JMan	

§  We did this for you	

public interface A {
 public void doIt(); // Abstract
}

public class B implements A {
 public void doIt() {
 …
 }
}

Listeners and Events in Java	

Events	

•  ActionEvent	

§  User clicks a button	

§  User hits return in text field	

•  MouseEvent 	

§  User clicks the mouse 	

§  User moves the mouse	

•  KeyEvent 	

§  User presses a key	

§  User releases a key	

Listeners	

•  ActionListener	

§  actionPerformed(ActionEvent)

•  MouseListener	

§  mouseClicked(MouseEvent) 	

§  mouseEntered(MouseEvent) 	

•  MouseMotionListener	

§  mouseDragged(MouseEvent) 	

•  KeyListener	

§  keyPressed(KeyEvent) 	

In packages:	

• javax.swing.event	

• java.awt.event	

