
9/17/12	

1	

A Interesting Challenge	

•  How do we add new methods to Rhino?	

§ Open up the .java file and add them!	

•  Java has a lot “built-in” classes	

§  Examples: String, Vector, JFrame	

•  What if we want to add methods to these?	

§ We cannot access the .java file (where is it???)	

•  But we can create a subclass	

§ A new class with all fields, methods of the “parent”	

§  Class also contains anything new we want to add	

Subclasses in the Java API	

•  Subclassing creates a
hierarchy of classes	

§  Subclass has a super class ���

or “parent” class	

§  That parent may have a

super class as well	

•  Explicit in the Java API	

§  API does not respecify
inherited methods	

§  Often have to go to super
class for specification	

Package	

Class	

Super class	

Super super class	

Class Definition REVISITED	

•  Describes the format of a folder (instance, object) of the class.	

	
/** ���
 * Description of what the class is for���
 */���
public class <class-name> extends <super-class> {	

	
 	
declarations of fields and methods (in any order) ���
}	

•  Class <class-name> has all methods and fields of its parent	

§  We say that it inherits them	

•  Also has any new fields or methods declared inside of it	

	

Folder Analogy and Subclasses	

superclass-name	

fields declared inside ���
<superclass-name>	

@3e9cff	

methods declared inside ���
<superclass-name>	

subclass-name	

fields declared inside ���
<subclass-name>	

methods declared inside ���
<subclass-name>	

folder (object) belongs ���
in file drawer for class	

subclass-name	

Subclassing a JFrame	

/** Description of what the class is for… */	

public class SquareJFrame extends JFrame {	

	
/** Set the height of the window to the width */	

	
public void setHeightToWidth() {	

	
 	
setSize(getWidth(),getWidth()); 	
 	
	

	
}	

	

	
/** Yields: the area of the window */	

	
public int area() {	

	
 	
return getWidth()*getHeight();	

	
}	

	
…	

}	

	

folder (object) belongs ���
in file drawer for class	

SquareJFrame	

Inherited method ���
which is used as ���
a helper method	

Object: The Superest Class of All	

	

	

	

	

	

	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

	

	

	

	

	

	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

	

	

	

	

	

	

equals(Object)

…

toString()

Object	

So this… is really this.	

9/17/12	

2	

The Bottom-Up Rule	

•  Which toString() is called?	

§  Work the way up from the

bottom of the folder.	

§  Find the first method header

that matches	

§  Use the definition from

the .java file for that class	

•  New method definitions

override those of super class	

	

	

	

	

	

	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

	

	

	

	

	

	

…
toString()

Object	

toString()

Inside-Out Rule (See p. 83)	

•  Parameter x0 is found in
the frame for the method
call. Exists temporarily	

•  Parameter x “blocks” (or
shadows) the reference to
the field x.	

	

Point3d	

x	
 50.0	

@3e9cff	

setX(double x0) {
 x = x0;
}

 … 	

Point3d	

x	
 25.0	

@01a2ed	

setX(double x) {
 x = x;
}

 … 	

A Solution: this!

•  In object (folder) @3e9cff, ���
this refers to @3e9cff	

•  In object (folder) @01a2ed, ���
this refers to @01a2ed	

	

Point3d	

x	
 50.0	

@3e9cff	

setX(double x) {
 this.x = x;
}

 … 	

Point3d	

x	
 25.0	

@01a2ed	

setX(double x) {
 this.x = x;
}

 … 	

this is a built-in “variable” that gives an object name	

Keywords this and super!

this!

•  Refers to the object name in
scope box of the method call	

•  this.<field> is field in object	

§  Example: this.x	

•  this.<method-call> calls a
method in this object	

§  Example: this.getX()	

•  this(<parameters>) calls a���
constructor	

§  Example: this(0.0,0.0,0.0)	

super!

•  Functions mostly the same as
this (refers to object in scope)	

•  super.<method-call> calls a
method in the superclass or
even higher up!	

•  super(<parameters>) calls
constructor of super class	

§  Useful for initialization	

§  Necessary if fields private	

Using this as a Constructor	

•  Usage: this(<params>)	

§  Looks for constructor with

parameters of that type	

§  Calls that constructor as a

helper method	

§  Can only do this inside

another constructor	

•  This is why object name

must be in the scope box	

§  Else what is this?	

§  this = name in scope box	

 public Point3d(double x0, ���
 double y0, ���
 double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

 }	

	

 public Point3d() {	

 // Uses other constructor.	

 this(0.0,0.0,0.0)	

 }	

Using super in a Constructor	

 public Employee(String n, int d) {	

 name= n;	

 start= d;	

 salary= 50000;	

}	

	

 public Executive(String n, int d, 	

 double b) { 	

 super(n,d);	

 bonus = b;	

}	

	

	

	

	

	

	

@105dc	

bonus

…

double

Executive	

	

	

	

	

	

	

…

Employee	

0.0

salary double 0.0

start int 2012

name String Fred

Must be first line	

