
Methods & Constructors	

Lecture 3	

Public vs. Private	

•  Recall our convention	

§  Fields are private	

§  Everything else public	

•  Private means “hidden”	

§  Public fields can be

accessed directly	

•  But this is a bad idea!	

§  Cannot control how other
programmers use them	

§  They might violate our
invariants (and get bugs)	

2/1/13	

 Methods & Constructors	

 2	

public class PublicPoint3d {!
 public double x;!
 public double y;!
 public double z;!
}	

	

•  Type in Interactions Pane:	

> PublicPoint3d p = new
PublicPoint3d();	

> p.x = 3.0;	

> p.x	

•  No need for getters/setters	

Public vs. Private	

•  Recall our convention	

§  Fields are private	

§  Everything else public	

•  Private means “hidden”	

§  Public fields can be

accessed directly	

•  But this is a bad idea!	

§  Cannot control how other
programmers use them	

§  They might violate our
invariants (and get bugs)	

2/1/13	

 Methods & Constructors	

 3	

public class PublicPoint3d {!
 public double x;!
 public double y;!
 public double z;!
}	

	

•  Type in Interactions Pane:	

> PublicPoint3d p = new
PublicPoint3d();	

> p.x = 3.0;	

> p.x	

•  No need for getters/setters	

Invariants must always be true. Always.	

The Role of Getters and Setters	

•  Make sure that the invariants are true	

	

Aside: Private is a Class Property!	

•  Private means hidden to
objects of other classes!	

§  Does not apply to two

objects of same class	

§  Methods can access fields

in object of same class	

•  Example: Point distance	

•  Useful in Assignment 1	

§  Hint: What field does not
have getters or setters?	

2/1/13	

 Methods & Constructors	

 4	

public class Point3d {!
 private double x;!
 private double y;!
 private double z;!
 …!
 /** Yields: Distance to q */!
 public double  

 distanceTo(Point3d q) {!
 return Math.sqrt(!
 (x-q.x)*(x-q.x)+!
 (y-q.y)*(y-q.y)+!
 (z-q.z)*(z-q.z));!
 }!
}	

	

Invariants vs. Preconditions	

2/1/13	

 5	

@4e0a1	

	

	

	

	

	

	

lname …

ssn

boss

…

…

Worker	

getName()	

setName(String n)	

/** Set worker’s last name to n 	

 * Precondition: n cannot be null 	

 * or “Bob”	

 */	

public void setName(String n) {	

 lname = n;	

 }	

•  Both are properties that
must be true	

§  Invariant: Property of a field 	

§  Precondition: Property of a

method parameter	

•  Preconditions are a way to
“pass the buck”	

§  Responsibility of the method

call, not method definition	

§  How you will “enforce”

invariants in Assignment 1	

• Recall lname invariant	

• Precondition ensures ���
 invariant is true	

	

Methods & Constructors	

Specifications for Methods in Worker	

2/1/13	

 Methods & Constructors	

 6	

@4e0a1	

	

	

	

	

	

	

lname “Obama”

ssn

boss

123456789

null

Worker	

@c4e21	

	

	

	

	

	

	

lname “Biden”

ssn

boss

2

@4e0a1	

Worker	

String	

int	

Worker	

String	

int	

Worker	

/** Constructor: a worker with last name n
 * (“” if none), SSN s, and boss b (null if none).
 * Precondition: n is not null, s in
 * 0..999999999 with no leading zeros.*/
public Worker(String n, int s, Worker b)

/** Yields: worker's last name */
public String getLname()

/** Yields: last 4 SSN digits w/o leading zeroes. */
public int getSSN()

/** Yields: worker's boss (null if none) */
public Worker getBoss()

/** Set boss to b */
public void setBoss(Worker b)
	

 w0 @4e0a1	

 Worker	

 w1 @c4e21	

 Worker	

• Contains the name of ���
 entity associated with ���
 the method���
• Typically, the object in ���
 the method call	

• Number of the statement in ���
 method body to execute next ���
• Starts with 1���
• Helps you keep track of���
 where you are	

Draw parameters ���
as variables ���
(e.g. boxes)	

How Do Methods Work?	

•  Method Frame: Formal representation of a method call	

•  Remember that methods are inside objects (folders)	

2/1/13	

 Methods & Constructors	

 7	

Draw template on 	

a piece of paper	

 method name: instruction counter	

 scope box	

local variables (later in the lecture)	

parameters	

The Scope Box	

•  Most methods are attached to
an object (folder)	

§  Result depends on the object

(folder) you use it on	

•  Example:	

§  var1.getX() is 2.2	

§  var2.getX() is 3.5	

•  Object (folder) you use for
the method call is the scope	

§  Goes in the scope box 	

§  Helps us keep track of

“current” object	

2/1/13	

 Methods & Constructors	

 8	

	

	

	

	

	

	

@4e0a1	

Point3d	

@4e0a1	

var1	

x 2.2

y

z

5.4

6.7

	

	

	

	

	

	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

@13fc8	

var2	

Methods & Constructors	

Example: p.setX(50.0); 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the method body	

§  Look for variables in the frame	

§  If not there, look in folder given

by the scope box	

4.  Erase the frame for the call	

2/1/13	

 9	

public void setX(double x0) {	

 x = x0;	

}	

Point3d	

x	

 15.0	

@3e9cff	

getX() { … }
setX(double x0) { x = x0; }

 … 	

x0	

setX:1	

 @3e9cff	

50.0	

@3e9cff	

p	

Point3d	

 50.0	

✗	

Methods & Constructors	

Example: var = p.getX(); 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the method body	

§  Look for variables in the frame	

§  If not there, look in folder given

by the scope box	

4.  Erase the frame for the call	

2/1/13	

 10	

public double getX() {	

 return x;	

}	

Point3d	

x	

 50.0	

@3e9cff	

getX() { … }
setX(double x0) { x = x0; }

 … 	

getX:1	

 @3e9cff	

@3e9cff	

p	

Point3d	

0.0	

var	

double	

50.0	

✗	

Static Methods	

•  Static methods are tied to a class
(e.g. file drawer)	

•  They must not access the fields!	

§  Fields are in the folders	

§  Folders have different field values	

•  Their method calls are different:	

§  <Class-Name>.<Method-Call>	

•  Example: Math methods in lab	

§  Math.ceil(5.6);	

§  Math.min(1,2);	

§  Math.sqrt(5);	

2/1/13	

 Methods & Constructors	

 11	

Point3d	

Class	

	

	

	

	

	

	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

Object	

Defining Static Methods	

Regular Version	

 	

/** Yields: "at least one of the ���

 * coordinates of this point is 0" */ ���
public boolean hasAZero() {	

 	

 return x == 0 || y == 0 || z == 0;	

	

}	

Static Version	

	

/** Yields: "at least one of the ���
 * coordinates of the point q is 0" */ ���
public static boolean ���
 hasAZero(Point3d q) {	

 	

 return q.x == 0 || q.y == 0 ���
 || q.z == 0;	

	

}	

2/1/13	

 Methods & Constructors	

 12	

Point3d.hasAZero(q);	

q.hasAZero();	

	

	

	

	

	

	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

@13fc8	

q	

Goes in the
scope box	

Call:	

Call:	

Static Variables	

•  Static variable is a single entity in the class 	

§  Used to hold information about all objects	

•  Declare it just like a field declaration	

public static int numberOfWorkers; // no. of Worker objects created	

•  Usage: Worker.numberOfWorkers	

2/1/13	

 Methods & Constructors	

 13	

@4e0a1	

	

	

	

	

	

	

lname Obama
Worker	

…	

@13fc8	

	

	

	

	

	

	

lname Biden
Worker	

…	

2	

numberOfWorkers	

@13fc8	

x	

@4e0a1	

y	

Class (file drawer) for class Worker	

Class, not
variable	

Method Model for Static Methods	

1.  Draw a frame for the call	

§  Scope box contains class!	

2.  Assign the argument value
to the parameter (in frame)	

3.  Execute the method body	

§  Look for variables in the frame	

§  If not there, look in static

variables in class in scope box	

4.  Erase the frame for the call	

14	

 public static boolean
	

hasAZero(Point3d q) {	

 return q.x == 0 || q.y == 0 ���
 || q.z == 0	

 }	

q	

hasAZero:1	

 Point3d	

@13fc8	

 Scope	

2/1/13	

 Methods & Constructors	

Constructors are Instance Methods	

1.  Make a new object (folder)	

§  Java gives the folder a name	

§  All fields are defauls (0 or null)	

2.  Draw a frame for the call	

3.  Assign the argument value to

the parameter (in frame)	

4.  Execute the method body	

§  Look for variables in the frame	

§  Execute statements to initialize ���

the fields to non-default values	

§  Give the folder name as the result	

5.  Erase the frame for the call	

2/1/13	

 15	

public Point3d(

double x0,	

	

 	

double y0,	

	

 	

double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

Point3d:	

 @3e9cff	

	

x0	

y0	

z0	

1	

Frame for	

Constructor	

Scope	

Methods & Constructors	

Example: p = new Point3d(1.0, 2.2, 3.3); 	

2/1/13	

 16	

public Point3d(

double x0,	

	

 	

double y0,	

	

 	

double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

p	

Point3d	

Point3d	

x	

 0.0	

@3e9cff	

…

y	

 0.0	

z	

 0.0	

Point3d:	

 @3e9cff	

	

x0	

y0	

z0	

1.0	

✗	

2.2	

3.3	

✗	

✗	

@3e9cff	

1.0	

2.2	

3.3	

1	

3	

2	

Methods & Constructors	

Local Variables	

•  Local variable: declared
inside a method body	

•  Four types of variables:	

§  Fields (in folders)	

§  Parameters (method header)	

§  Static (in file drawer)	

§  Local (method body)	

•  Local variables are very
useful with if-statements	

§  Hold temporary values	

§  “Scratch computation”	

	

 // swap x, y ���
 // Put the larger in y ���
 if (x > y) {���
 int temp; 
 temp = x;���
 x = y;���
 y = temp;���
 }	

2/1/13	

 Methods & Constructors	

 17	

x 3 y 0

temp 3

0 3

Local Variable Scope	

/** Yields: the max of x and y */	

public static int max(int x, int y) {	

 // Swap x and y ���
 // Put the max in x	

 if (x < y) {	

 int temp;	

 temp= x;	

 x= y;	

 y= temp;	

 }	

	

 return x;	

}	

	

•  Scope of local variable: ���
the places it can be used	

•  Only inside a “block”	

§  Following the declaration	

§  Inside of the braces {}	

2/1/13	

 Methods & Constructors	

 18	

scope of temp	

Cannot use temp down here.���
You will get an error!	

