
Methods & Constructors	


Lecture 3	




Public vs. Private	


•  Recall our convention	

§  Fields are private	

§  Everything else public	


•  Private means “hidden”	

§  Public fields can be 

accessed directly	

•  But this is a bad idea!	


§  Cannot control how other 
programmers use them	


§  They might violate our 
invariants (and get bugs)	


2/1/13	
 Methods & Constructors	
 2	


public class PublicPoint3d {!
  public double x;!
  public double y;!
  public double z;!
}	

	

•  Type in Interactions Pane:	


> PublicPoint3d p = new 
PublicPoint3d();	


> p.x = 3.0;	

> p.x	


•  No need for getters/setters	




Public vs. Private	


•  Recall our convention	

§  Fields are private	

§  Everything else public	


•  Private means “hidden”	

§  Public fields can be 

accessed directly	

•  But this is a bad idea!	


§  Cannot control how other 
programmers use them	


§  They might violate our 
invariants (and get bugs)	


2/1/13	
 Methods & Constructors	
 3	


public class PublicPoint3d {!
  public double x;!
  public double y;!
  public double z;!
}	

	

•  Type in Interactions Pane:	


> PublicPoint3d p = new 
PublicPoint3d();	


> p.x = 3.0;	

> p.x	


•  No need for getters/setters	


Invariants must always be true.  Always.	


The Role of Getters and Setters	

•   Make sure that the invariants are true	

	




Aside: Private is a Class Property!	


•  Private means hidden to 
objects of other classes!	

§  Does not apply to two 

objects of same class	

§  Methods can access fields 

in object of same class	

•  Example: Point distance	

•  Useful in Assignment 1	


§  Hint: What field does not 
have getters or setters?	


2/1/13	
 Methods & Constructors	
 4	


public class Point3d {!
  private double x;!
  private double y;!
  private double z;!
  …!
  /** Yields: Distance to q */!
  public double    

  distanceTo(Point3d q) {!
      return Math.sqrt(!
         (x-q.x)*(x-q.x)+!
         (y-q.y)*(y-q.y)+!
         (z-q.z)*(z-q.z));!
    }!
}	

	




Invariants vs. Preconditions	


2/1/13	
 5	


@4e0a1	


	

	

	

	

	

	


lname … 

ssn 

boss 

… 

… 

Worker	


getName()	


setName(String n)	


/** Set worker’s last name to n 	

 * Precondition: n cannot be null 	

 *  or “Bob”	

 */	

public void setName(String n) {	


        lname = n;	

 }	


•  Both are properties that 
must be true	

§  Invariant: Property of a field 	

§  Precondition: Property of a 

method parameter	


•  Preconditions are a way to 
“pass the buck”	

§  Responsibility of the method 

call, not method definition	

§  How you will “enforce” 

invariants in Assignment 1	

• Recall lname invariant	

• Precondition ensures ���
   invariant is true	

	


Methods & Constructors	




Specifications for Methods in Worker	


2/1/13	
 Methods & Constructors	
 6	


@4e0a1	


	

	

	

	

	

	


lname “Obama” 

ssn 

boss 

123456789 

null 

Worker	


@c4e21	


	

	

	

	

	

	


lname “Biden” 

ssn 

boss 

2 

@4e0a1	


Worker	


String	


int	


Worker	


String	


int	


Worker	


/** Constructor: a worker with last name n  
 * (“” if none),  SSN s, and boss b (null if none). 
 * Precondition:  n is not null,  s in   
 * 0..999999999 with no leading zeros.*/ 
public Worker(String n, int s, Worker b)  

/** Yields: worker's last name */ 
public String getLname() 

/** Yields: last 4 SSN digits w/o leading zeroes. */ 
public int getSSN() 

/** Yields: worker's boss (null if none) */ 
public Worker getBoss() 

/** Set boss to b */ 
public void setBoss(Worker b) 
	
 w0 @4e0a1	
 Worker	
 w1 @c4e21	
 Worker	




• Contains the name of ���
   entity associated with ���
   the method���
• Typically, the object in ���
   the method call	


•  Number of the statement in ���
    method body to execute next ���
•  Starts with 1���
•  Helps you keep track of���
    where you are	


Draw parameters ���
as variables ���
(e.g. boxes)	


How Do Methods Work?	


•  Method Frame: Formal representation of a method call	

•  Remember that methods are inside objects (folders)	


2/1/13	
 Methods & Constructors	
 7	


Draw template on 	

a piece of paper	


 method name: instruction counter	
  scope box	


local variables (later in the lecture)	


parameters	




The Scope Box	


•  Most methods are attached to 
an object (folder)	

§  Result depends on the object 

(folder) you use it on	

•  Example:	


§  var1.getX() is 2.2	

§  var2.getX() is 3.5	


•  Object (folder) you use for 
the method call is the scope	

§  Goes in the scope box 	

§  Helps us keep track of 

“current” object	


2/1/13	
 Methods & Constructors	
 8	


	

	

	

	

	

	


@4e0a1	

Point3d	


@4e0a1	
var1	


x 2.2 

y 

z 

5.4 

6.7 

	

	

	

	

	

	


@13fc8	

Point3d	


x 3.5 

y 

z 

-2.0 

0.0 

@13fc8	
var2	




Methods & Constructors	


Example: p.setX(50.0); 	

1.  Draw a frame for the call	

2.  Assign the argument value 

to the parameter (in frame)	

3.  Execute the method body	


§  Look for variables in the frame	

§  If not there, look in folder given 

by the scope box	

4.  Erase the frame for the call	


2/1/13	
 9	


public void setX(double x0) {	

     x = x0;	

}	


Point3d	

x	
 15.0	


@3e9cff	


getX() { … } 
setX(double x0) { x = x0; } 

 … 	


x0	


setX:1	
 @3e9cff	


50.0	


@3e9cff	
p	

Point3d	
 50.0	
✗	




Methods & Constructors	


Example: var = p.getX(); 	

1.  Draw a frame for the call	

2.  Assign the argument value 

to the parameter (in frame)	

3.  Execute the method body	


§  Look for variables in the frame	

§  If not there, look in folder given 

by the scope box	

4.  Erase the frame for the call	


2/1/13	
 10	


public double getX() {	

     return x;	

}	


Point3d	

x	
 50.0	


@3e9cff	


getX() { … } 
setX(double x0) { x = x0; } 

 … 	


getX:1	
 @3e9cff	


@3e9cff	
p	

Point3d	


0.0	
var	

double	


50.0	
✗	




Static Methods	


•  Static methods are tied to a class 
(e.g. file drawer)	


•  They must not access the fields!	

§  Fields are in the folders	

§  Folders have different field values	


•  Their method calls are different:	

§  <Class-Name>.<Method-Call>	


•  Example: Math methods in lab	

§  Math.ceil(5.6);	

§  Math.min(1,2);	

§  Math.sqrt(5);	


2/1/13	
 Methods & Constructors	
 11	


Point3d	


Class	


	

	

	

	

	

	


@13fc8	

Point3d	


x 3.5 

y 

z 

-2.0 

0.0 

Object	




Defining Static Methods	


Regular Version	

 	
/** Yields: "at least one of the   ���

 * coordinates of this point is 0" */ ���
public boolean hasAZero() {	


  	
    return x == 0 || y == 0 || z == 0;	

	
}	


Static Version	

	
/** Yields: "at least one of the   ���
 * coordinates of the point q is 0" */ ���
public static boolean ���
            hasAZero(Point3d q) {	


  	
    return q.x == 0 || q.y == 0 ���
                             || q.z == 0;	

	
}	


2/1/13	
 Methods & Constructors	
 12	


Point3d.hasAZero(q);	


q.hasAZero();	


	

	

	

	

	

	


@13fc8	

Point3d	


x 3.5 

y 

z 

-2.0 

0.0 

@13fc8	
q	

Goes in the 
scope box	


Call:	


Call:	




Static Variables	


•  Static variable is a single entity in the class 	

§  Used to hold information about all objects	


•  Declare it just like a field declaration	

public static int numberOfWorkers;  // no. of Worker objects created	


•  Usage: Worker.numberOfWorkers	

2/1/13	
 Methods & Constructors	
 13	


@4e0a1	


	

	

	

	

	

	


lname Obama 
Worker	


…	


@13fc8	


	

	

	

	

	

	


lname Biden 
Worker	


…	


2	
numberOfWorkers	


@13fc8	
x	


@4e0a1	
y	


Class (file drawer) for class Worker	

Class, not 
variable	




Method Model for Static Methods	


1.  Draw a frame for the call	

§  Scope box contains class!	


2.  Assign the argument value 
to the parameter (in frame)	


3.  Execute the method body	

§  Look for variables in the frame	

§  If not there, look in static 

variables in class in scope box	

4.  Erase the frame for the call	


14	


  public static boolean    
	
hasAZero(Point3d q) {	


        return q.x == 0 || q.y == 0 ���
                                 || q.z == 0	

  }	


q	


hasAZero:1	
 Point3d	


@13fc8	
 Scope	


2/1/13	
 Methods & Constructors	




Constructors are Instance Methods	


1.  Make a new object (folder)	

§  Java gives the folder a name	

§  All fields are defauls (0 or null)	


2.  Draw a frame for the call	

3.  Assign the argument value to 

the parameter (in frame)	

4.  Execute the method body	


§  Look for variables in the frame	

§  Execute statements to initialize ���

the fields to non-default values	

§  Give the folder name as the result	


5.  Erase the frame for the call	


2/1/13	
 15	


public Point3d( 	
double x0,	

	
 	
double y0,	

	
 	
double z0) {	


    x = x0;	

    y = y0;	

    z = z0;	

}	


Point3d:	
 @3e9cff	

	
x0	


y0	


z0	


1	


Frame for	

Constructor	


Scope	


Methods & Constructors	




Example: p = new Point3d(1.0, 2.2, 3.3); 	


2/1/13	
 16	


public Point3d( 	
double x0,	

	
 	
double y0,	

	
 	
double z0) {	


    x = x0;	

    y = y0;	

    z = z0;	

}	


p	

Point3d	


Point3d	

x	
 0.0	


@3e9cff	


… 

y	
 0.0	


z	
 0.0	


Point3d:	
 @3e9cff	

	
x0	


y0	


z0	


1.0	
✗	

2.2	


3.3	

✗	

✗	


@3e9cff	

1.0	


2.2	


3.3	


1	
3	
2	


Methods & Constructors	




Local Variables	


•  Local variable: declared 
inside a method body	


•  Four types of variables:	

§  Fields (in folders)	

§  Parameters (method header)	

§  Static (in file drawer)	

§  Local (method body)	


•  Local variables are very 
useful with if-statements	

§  Hold temporary values	

§  “Scratch computation”	


	
    // swap x, y  ���
    // Put the larger in y ���
    if (x > y) {���
       int temp; 
      temp = x;���
       x = y;���
       y = temp;���
    }	


2/1/13	
 Methods & Constructors	
 17	


x 3 y 0 

temp 3 

0 3 



Local Variable Scope	

/** Yields: the max of x and y */	

public static int max(int x, int y) {	

       // Swap x and y ���
      // Put the max in x	

       if (x < y) {	

            int temp;	

            temp= x;	

            x= y;	

            y= temp;	

        }	

	

        return x;	

}	

	


•  Scope of local variable: ���
the places it can be used	


•  Only inside a “block”	

§  Following the declaration	

§  Inside of the braces {}	


2/1/13	
 Methods & Constructors	
 18	


scope of temp	


Cannot use temp down here.���
You will get an error!	



