
1	

Patient	

name	

 “W. White”	

address	

 “New York”	

owes	

 250.00	

@3e9cff	

Extended Review From Last Time	

•  p.getName()	

§  Has value “W. White”	

§  Function; gives value	

•  p.pay(250.0);	

§  Sets owes to 0	

§  Procedure; ���

it does something	

name of folder	

fields ���
(variables)	

methods	

getName()	

pay(double d)	

name of class	

function	

procedure	

@105dc	

p	

variable name	

name of folder	

Class versus Object	

Anatomy of a declaration + assignment statement:	

	

	

 	

 	

int x = 2;	

	

	

 	

 	

Point3d p = new Point3d();	

Type	

 Variable	

 Value	

Class	

 Object	

The Value null!

•  You can declare a class
variable w/o using new	

§  Example: Point3d var3;	

•  Value in variable is null!
§  null: Absence of a name	

•  var3.getX() gives error!	

§  There is no name in var3	

§  Does not know which���

Point3d to access	

§  NullPointerException	

	

	

	

	

	

	

@4e0a1	

Point3d	

@4e0a1	

var1	

@13fc8	

var2	

null	

var3	

x 2.2

y

z

5.4

6.7

	

	

	

	

	

	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

Class Definition	

•  Describes the format of a folder (instance, object) of the class.	

	

/** ���
 * Description of what the class is for���
 */���
public class <class-name> {	

	

 	

declarations of fields and methods (in any order) ���
}	

•  The class and every method has a comment of the form	

	

 	

/** specification */	

•  This is a Javadoc comment (Part of Lab next week). 	

This is a comment���
It does nothing.���
It is a note to yourself	

/** An instance is a worker in a certain organization. */���
public class Worker {���

	

private String lname;	

 // Last name (“” if none; never null) ���
	

private int ssn; 	

 // Social security #: in 0..999999999 ���
	

private Worker boss; 	

 // Immediate boss (null if none) 	

}	

Declarations
of fields	

Invariants:	

Properties that
are always true	

@4e0a1	

	

	

	

	

	

	

lname …

ssn

boss

…

…

Worker	

Field: A Variable in each Folder of a Class	

Note the private and public keywords.���
They are important but we will explain them later.	

We Write Programs to Do Things	

•  Methods are the key doers	

Method Definition	

 Method Call	

•  Defines what method does	

public void setName(String n) {	

 lname= n;	

}	

	

•  Command to do the method	

	

 	

var.setName(“Bob”);	

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is declared within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Method	

Header	

Method	

Body	

(inside {})	

2	

Getter and Setter Methods	

/** Yields: worker’s last name*/	

public String getName() {	

 return lname;	

}	

 /** Set worker’s last name to n 	

 * Cannot be null; can be “” */	

public void setName(String n) {	

 lname= n;	

 }	

	

/** Yields: last 4 SSN digits, as int *	

•  Try writing it yourself. 	

•  Full code on website	

	

Getter methods (functions) get
or retrieve values from a folder.	

Setter methods (procedures) set
or change fields of a folder	

@4e0a1	

	

	

	

	

	

	

lname …

ssn

boss

…

…

Worker	

getName()	

setName(String n)	

Why Getters and Setters?	

Setters	

•  Protect field invariants	

•  Example:	

 public void setName(String n) {	

	

lname = n;	

	

if (n == null) {	

	

 lname = “”;	

	

}	

 }	

Getters	

•  Allow “read”, not “write”	

•  Example:	

 public int getName() {	

	

return lname;	

 }	

	

w.getName() = null; // Illegal!	

 	

Invariant preserved	

How Methods Work!

•  Example: var1.getX()	

§  Gets object (folder) name ���

from the variable	

§  Searches class (file drawer) ���

for object (folder)	

§  Executes commands inside ���

the method on that object	

•  Methods apply to the object
(folder), not the variable!	

§  Execute var2.setX(8.2);	

§  Makes var3.getX() == 8.2	

	

	

	

	

	

	

@4e0a1	

Point3d	

@4e0a1	

var1	

@13fc8	

var2	

x 2.2

y

z

5.4

6.7

	

	

	

	

	

	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

@13fc8	

var3	

Memorize This!	

Write it down
several times.	

Initializing the Fields of an Object (Folder)	

•  Creating a new Worker is now a multi-step process:	

§ Worker w = new Worker();	

§ w.setName(“White”);	

§ …	

•  We would like to be able to use something like	

	

 	

Worker w = new Worker(“White”, 1, null);	

§  Create a new Worker, sets the last name to “White”, ���

the SSN to 0000000001, and the boss to null.	

§ Need a special kind of method: the constructor	

lname is null
violates invariant	

Initializing the Fields of an Object (Folder)	

•  Creating a new Worker is now a multi-step process:	

§ Worker w = new Worker();	

§ w.setName(“White”);	

§ …	

•  We would like to be able to use something like	

	

 	

Worker w = new Worker(“White”, 1, null);	

§  Create a new Worker, sets the last name to “White”, ���

the SSN to 0000000001, and the boss to null.	

§ Need a special kind of method: the constructor	

lname is null
violates invariant	

Invariants must always be true. Always.	

Purpose of the Constructor	

•  Initialize the fields of a newly created object	

•  Make sure that the invariants are true	

	

Memorize This!	

Write it down
several times.	

Example Constructor	

/** ���
* Constructor: an instance with last ���
* name n (can’t be null, can be “”), ���
* SSN s (an int in 0..999999999), and ���
* boss b (null if none) ���
*/	

 public Worker(String n, int s, 	

	

 Worker b) {	

 lname = n;	

 ssn = s;	

 boss = b;	

}	

@4e0a1	

	

	

	

	

	

	

lname …

ssn

boss

…

…

Worker	

getName()	

setName(String n)	

Worker(String n, int s, Worker b)	

name of constructor	

= name of class	

no void or type!	

