
1	

1	

CS1110 Classes, wrapper classes, Vectors. 10 Feb 2012	

Miscellaneous points about classes.���
Discussion of wrapper classes and class Vector	

Use the text as a reference.	

1.  Want to know about type
int? Look it up in text.	

2.  Want to know about
packages? Look up
“packages”,	

3. How is the new-exp
evaluated? Look it up.	

4. etc.	

2	

Content of this lecture	

Go over miscellaneous points to round out your knowledge of
classes and subclasses. There are a few more things to learn
after this, but we will handle them much later.

•  Inheriting fields and methods and overriding methods.	

 Sec. 4.1 and 4.1.1: pp. 142–145	

•  Purpose of super and this. Sec. 4.1.1, pp. 144–145.	

•  More than one constructor in a class; another use of this.	

 Sec. 3.1.3, pp. 110–112.	

•  Constructors in a subclass —calling a constructor of the	

 super-class; another use of super. Sec. 4.1.3, pp. 147–148.	

• Wrapper classes. Read Section 5.1. 	

3	

Employee c= new Employee(“Gries”, 1969, 50000);	

c.toString()	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	
 50,000.00	

getName() setName(String n) …	

toString()	

equals(Object) toString() 	

Employee	

c	
 a0	

Which method toString()
is called?	

Overriding rule, or���
bottom-up rule:���
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.	

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.	

Sec. 4.1,
page 142	

This class is on
page 105 of the
text.	

4	

Purpose of super and this	

this refers to the name of the object in which it appears.	

super is similar but refers only to components in the partitions above.	

/** = String representation of this
Employee */	

public String toString() {	

 return this.getName() + ", year ” +���
 getStart() + ", salary ” + salary;	

} 	

ok, but unnecessary	

/** = name of this object */	

public String toStringUp() {	

 return super.toString();	

}	

necessary 	

Sec. 4.1, pages
144-145	

a0	

Object	

name	
 “Gries”	

start	
 1969	

salary	
 50,000.00	

getName() ���
setName(String n) {…}	

toString()	

toStringUp() { …}	

equals(Object) ���
 toString() 	

Employee	

5	

A second constructor in Employee	

Provide flexibility, ease of use, to user	

/** Constructor: a person with name n, year hired d, salary s */	

public Employee(String n, int d, double s) {	

 name= n; start= d; salary= s;���
 }	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 name= n; start= d; salary= 50000; 	

}	

First constructor	

Second constructor;
salary is always 50,000	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 this(n, d, 50000); ���
}	

 Another version of second
constructor; calls first constructor	

Here, this refers to the other constructor.
You HAVE to do it this way 	

Sec. 3.1.3,
page 110	

6	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	

10,000	

Employee(String, int)	

toString() getCompensation()	

toString() …	

Employee	

Executive	
bonus	

Executive(String, int, double) 	

getBonus() getCompensation()	

toString() 	

50,000	

Calling a superclass
constructor from the
subclass constructor	

public class Executive extends Employee {	

 private double bonus; 	

 /** Constructor: name n, year hired	

 d, salary 50,000, bonus b */	

 public Executive(String n, int d, double b) {	

 super(n, d);	

 bonus= b;	

 }	

}	

The first (and only the first) statement in
a constructor has to be a call on another
constructor. If you don’t put one in,
then this one is automatically used:	

	
super();	

Principle: Fill in superclass fields first.	

Sec. 4.1.3, page 147	

2	

7	
7	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	

10,000	

Employee(String, int)	

toString() getCompensation()	

toString() …	

Employee	

Executive	
bonus	

Executive(String, int, double) 	

getBonus() getCompensation()	

toString() 	

50,000	

public class Executive extends Employee {	

 public Executive(String n, int d, double b) {	

 bonus= b;	

 }	

}	

First statement in constructor:
constructor call. If none, Java
inserts:	

	
super();	

Is above program okay?	

A. Compiles with no change	

B. Compiles with super() inserted	

C. Doesn’t compile 	

One constructor in Employee	

8	
8	

Wrapper classes. Read Section 5.1 	
a0	

Integer	
???	
 5	
Soon, we’ll wish to deal

with an int value as an
object.	

"Wrapper class" Integer
provides this capability.	

An instance of class Integer���
contains, or "wraps", one int value.	

Can’t change the value. immutable.	

Integer(int) Integer(String) 	

toString() equals(Object) intValue()	

	

Instance methods: constructors,���
toString(), equals, intValue.	

Static components:	

MIN_VALUE MAX_VALUE	

toString(int) toBinary(int)	

valueOf(String) parseInt(String)	

Static components provide ���
important extra help.	

9	
9	

Sandwich wrapper	

Spring rolls wrappers	

cupcake wrapper	

a0	

Integer	

???	
 5	

What is a wrapper?���
Something that holds another thing ���

–wraps around it	

an int wrapper	

10	
10	

wriggle wrapper	

11	

Each primitive type has a corresponding wrapper class. When
you want to treat a primitive value of that type as an object, then
just wrap the primitive value in an object of the wrapper class! 	

Primitive type 	
Wrapper class	

int 	
 	
Integer	

long 	
 	
Long	

float 	
 	
Float	

double 	
 	
Double	

char 	
 	
Character	

boolean	
 	
Boolean	

Each wrapper class has:	

• Instance methods, e.g. equals,
constructors, toString,	

• Useful static constants and
methods.	

You don't have to memorize the methods of the wrapper classes. But
be aware of them and look them up when necessary. Use Gries/
Gries, Section 5.1, and ProgramLive, 5-1 and 5-2, as references.	

Integer k= new Integer(63); int j= k.intValue();	

12	

Class Vector

12	

An instance of class Vector maintains an expandable/
shrinkable list of objects. Use it whenever you need to
maintain a list of things.	

Values of primitive types cannot be placed directly into the
list of a Vector. That’s why we have the wrapper classes. In
the interactions pane, we will do a few things, like this:	

	

import java.util.*;	

Vector v= new Vector();	

v	

v.add(new Integer(2));	

v.add(3);	

v.add(‘c’);	

	

	

In newer versions of Java, v.add(1)
is allowed; the 1 is wrapped in an

Integer object and the name of that
object is added to v. 	

Doesn’t work in older versions.	

