
1

CS1130 Monday, 6 February 2012

Discussion of Methods: Executing method
calls. If-statements. The return statement in a
function. Local variables.
Read chapter 2,�but NOT 2.3.8!!!!
Inside-out rule; use of this, super

Sit next to someone.
Today, we do some

work in pairs.
Get out a blank
sheet of paper.

Instant replay…see videos of lectures for CS1110 on
www.VideoNote.com. Log in with your Cornell NetID.

Rsrecah on spleilng
Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't mttaer
in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is that
the frsit and lsat ltteer be at the rghit pclae. The rset can be a total
mses and you can sitll raed it wouthit porbelm.Tihs is bcuseae the
huamn mnid deos not raed ervey lteter by istlef, but the wrod as a
wlohe. 2

/** An instance keeps information about a book chapter */
public class Chapter {
 // class invariant: meanings of fields and constraints on them
 private int number; ! // the chapter number, in range 0..100
 private String title; ! // chapter title
 private Chapter prev; !// instance for the previous chapter
! // (null if no previous chapter)

}

 …

a0
Chapter

numb 2

title “objects”

prev a5
 …

a5
Chapter

numb 1

title “intro”

prev null

c a0

3

/** Constructor: a chapter with title t,
 number n, and previous chapter null.*/
public Chapter(String t, int n) {
 title= t;
 number= n;
 previous= null;
}

Within the body
(between { }) is the

sequence of
statements to

execute when the
method is called.

 (“Follow the
recipe.”)

But how is a method call executed?
How do parameters and arguments work?

parameters:
t and n

We write programs in order to do things.
Methods are the key “doers”.

declaration of
parameter t

Memorize: a parameter is a variable that is declared
within the parentheses of a method header.

4

The frame (the box) for a method call
Remember: Every method is in a folder (object)
or in a file-drawer.

method name: instruction counter scope box

local variables (don’t deal with these now)

parameters

scope box contains
the name of entity
that contains the
method —a file
drawer or object.

number of the statement of
method body to execute next.
Start with 1. Helps you keep
track of what statement to
execute next.

Draw the
parameters
as variables.

The scope box contains:
For an instance method, the name of the object in which it resides
For a static method, the name of the class in which it is defined

Draw template on
a piece of paper

5

a0
Account

 amt

setAmt(int newAmt) {amt= newAmt;}

getAmt() {…}

15

To execute the call x.setAmt(50);

x a0 Account

1. Draw a frame for the call.
2. Assign the value of the argument
to the parameter (in the frame).

3. Execute the method body. (Look
for variables in the frame; if not
there, look in the place given by
the scope box.)

4. Erase the frame for the call.

public void setAmt(int newAmt) {
 amt= newAmt;
}

6

a1
Account

 amt

setAmt(int newAmt) {…}

getAmt() {return amt;}

25

To execute the call cash= y.getAmt();

y a1 Account

1. Draw frame for call.
2. Assign value of argument to
parameters (in the frame).

3. Execute method body. (Look for
variables in the frame; if not there, look
in the place given by the scope box.)

4. Erase the frame for call; use value of return-
statement expression as function-call value.

cash
int

public int getAmt() {
 return amt;
}

7

new Chapter(“Intro”, 1)

a8
Chapter

Chapter(String t, int n) { … }

nulltitle

nullprevious
0number

Note local variable d declared
within method body. It should
be drawn in frame for call.

1. Draw a frame for the call.

2. Assign arg values to pars.

3. Execute the method body.

4. Erase the frame for the call.

Chapter(String t, int n) {
 String d;
 1: d= n + “: ” + t;
 2: title= d;
 3: number= n;
 4: previous= null;
}

8

/* Put smaller of x, y in z */
if (x < y) {
 z= x;
}
else {
 z= y;
}

if statement

/* swap x, y to put larger
 in y */
if (x > y) {
 int t;
 t= x;
 x= y;
 y= t;
}

Syntax:
if (<boolean expression>)
 <statement>

Execution: if the <boolean
expression> is true, then
execute the <statement>

if-else statement

Syntax:
if (<boolean expression>)
 <statement1>
else <statement2>

Execution: if the boolean
expression is true, then execute
<statement1>;
otherwise, execute <statement2>

9

Idiom: if statements and multiple return statements

/** = smallest of b, c, d */
public static int smallest(int b, int, c, int d) {

!

}

Execution of statement

 return <expr> ;

terminates execution of
the procedure body and

yields the value of
<expr> as result of

function call

Execution of function body must end by executing a return statement.

return d;

if (b <= c && b <= d) {
 return b;
}

Assertion comment

// { The smallest is either c or d }
if (c <= d) {
 return c;
}
// { the smallest is d }

10

Syntax of procedure/function/constructor and calls

public <result type> <name> (<parameter declarations>) { … }
public void <name> (<parameter declarations>) { … }
public <class-name> (<parameter declarations>) { … }

function
procedure

constructor

<name> (<arguments>)

<name> (<arguments>) ;
new <class-name> (<arguments>)

function call
procedure call

constructor call

Exec. of a function body must terminate by executing a statement
“return <exp> ;”, where the <exp> has the <result type>.

Exec. of a proc body may terminate by executing statement “return ;”

Exec. of a constructor body initializes fields of a new object in order to
make the class invariant true.

<arguments>: <expression>, <expression>, …, <expression>

11

Scope of local variable is the places where it can be used. The scope is
the sequence of statements following it within the containing “block”.

/** = the max of x and y */
public static int max(int x, int y) {
 // Swap x and y to put the max in x
 if (x < y) {
 int temp;
 temp= x;
 x= y;
 y= temp;
 }

 return x;
 }

scope of temp

You can’t use temp down here.

It is an error!

12

Person!
a0!

name!

getNameAndPop() {!
 return name + PersonPop;"
}!

Person!
a1!

name!

getNameAndPop() {!
 return name + PersonPop;"
}!

PersonPop!

The inside-out rule (see p. 83)
Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs.
(If a name is declared twice, the closer one prevails.)

13

!
setName(String n) {!
 name= n;!
}!

Person!
a0!

name!

Parameter n would be
found in the frame for the
method call.

name!
!
setName(String name) {!
 name= name;!
}!

Person!
a1!

Parameter name “blocks” the
reference to the field name.

Method parameters participate in the inside-out rule: remember the frame.!

14

PersonPop!

!
!
setName(String name) {!
 this.name= name;!
}!

!
!
setName(String name) {!
 this.name= name;!
}!

Person!
a0!

name! Person!
a1!

name!

In folder a0,
this evaluates to a0

In folder a1,
this evaluates to a1

A solution: this and super
Within an object, this evaluates to the name of the object.

15

toString() { … }!
!
otherMethod { …!
 … super.toString() …!
}!

Object!
a1!

Elephant!

method equals()!

method toString()!
Because of the
keyword super, this
calls toString in the
Object partition.

About super
Within a subclass object, super refers to the partition above the one
that contains super.!

