
CS1130, Spring 2012. Lecture Sections. Assignment 1. Rhinos

Due on the CMS at the time stated on the CMS

Monitoring Rhinos
Website http://msnbc.msn.com/id/10877076/ says that, "the
rhinoceros population has declined by 90 percent since 1970,
with five species remaining in the world today, all of which
are endangered. The white and black rhinos are the only
species left in Africa... . " Lately, Kenya (with less than 500
rhinos left!) relocated 33 rhinos to Meru National Park, where
they hope to protect them from poachers. Poachers kill the

rhinos for their horns

Rhinos are not the only endangered species. Web page http://www.redlist.org/ will tell you that the number
of endangered vertebrates (mammals, birds, reptiles, amphibians, and fishes) grew from 3,314 in 1996/98 to
5,188 in 2004. Of the 22,733 evaluated species 23% were endangered. For more info on endangered
species, see http://www.worldwildlife.org/. Some of the rhino pictures in this assignment were downloaded
from www.birdingafrica.net.

When an animal population is small, the animals can be monitored. Sometimes they will be captured and
tagged. Some tags emit a signal, so that one can track the animal. Even in populated places, animals are
tagged. Here in Ithaca, one can see deer with tags on their ears wandering in the fields. Keep your eyes
peeled, and it won't take long for you to see one.

Your task in this assignment is to develop a Java class Rhino, which will maintain information about a
rhino, and a JUnit class RhinoTester to maintain a suite of testcases for Rhino. This assignment will
help illustrate how Java’s classes and objects can be used to maintain data about a collection of things.

Read the whole assignment before starting. Follow the instructions given below in order to complete the
assignment as quickly and as efficiently as possible.

HELP

If you don't know where to start, if you don't understand testing, if you are lost, SEE SOMEONE
IMMEDIATELY —the course instructor, a TA, a consultant. Do not wait. A little one-on-one help can do
wonders.

Class Rhino

An instance of class Rhino represents a single rhino. It has several fields that one might use to describe a
rhino, as well as methods that operate on these fields. Here are the fields, all of which should be private
(you can choose the names of these fields).

name. (a String)

gender: 'F' for female and 'M' for male. (a char)
month of birth. (an int)
year of birth. (an int)
tag. (an int)
father: the name on the folder of the father's Rhino object (null if unknown). (a
Rhino)
mother: the name on the folder of the mother's Rhino object (null if unknown).
(a Rhino)
number of children of this Rhino. (an int)

Here are some details about these fields:

The name is any string of characters. Like people, rhinos can have the same name.
The month of birth is in the range 1..12, representing a month from January to December. The year of
birth is something like 1857 or 2005. Do not worry about invalid dates; do not write code that checks
whether dates are valid: assume they are valid.
The tag is the number on the rhino's tag. This is an integer ≥ 0. If the rhino is not tagged yet, this field
contains –1.
The father and mother fields are the names of the Rhino objects (manila folders) that correspond to
this rhino's parents. They are not Strings. They are null if not known.

Class invariant

Accompanying the declarations of these fields should be comments that describe what each field means —
what it contains. For example, on the declaration of field tag, state in a comment that the field is –1 if the
rhino is untagged and the tag number itself (≥ 0) if the rhino is tagged. The collection of the comments on
these fields, giving the meanings of the fields and constraints on them, is called the "class invariant".

Whenever you write a method (see below), look through the class invariant and convince yourself that the
class invariant is correct when the method ends. And a constructor must assign to fields to make the class
invariant true.

Rhino Methods

Class Rhino has the following methods. Pay close attention to the parameters and return values of each
method. The descriptions, while informal, are complete.

Constructor Description

Rhino(String n,
char g,
int m, int y)

Constructor: a new Rhino with name n, gender g, birth month m, and
birth year y.
Precondition: The gender is either 'M' (for male) or 'F' (for female), and
the birth month is in 1..12. The new rhino is not tagged, its parents are
not known, and it has no children.

Rhino(String n,
char g,

Constructor: a new Rhino with name n, gender g, birth month m, birth
year y, tag t, and father and mother dad and mom.
Precondition: The gender is either 'M' (for male) or 'F' (for female), and

int m, int y, int
t,
Rhino dad, Rhino
mom)

the birth month is in 1..12. The tag is >= 0, with -1 meaning that the
rhino is untagged. dad is not null and its gender is 'M'. mom is not null
and its gender is 'F'.

When you write a constructor body, be sure to set all the fields to appropriate values that make the class
invariant true.

Getter Method Description Return type

getName() = the name of this rhino. String

isMale() = "this rhino is male". boolean

getMOB() = the month this rhino was born in the range 1..12. int

getYOB() = the year this rhino was born. int

getMom() = the name of (the folder containing) this rhinos’s
mother.

Rhino

getDad() = the name of (the folder containing) this rhino’s
father.

Rhino

getTag() = this rhino’s tag number (-1 if it has not been
assigned one)

int

getNumberOfChildren() = the number of rhinos that have this one as a parent. int

toString() = a representation of this Rhino. Its precise
specification is discussed below.

String

Setter Method Description

setName(String s) set the name of this rhino to s.

setGender(char g) set the gender of this rhino to g ('M' for male, 'F' for female).

setMOB(int m) set the month this rhino was born to m
Precondition: m is in the range 1..12.

setYOB(int y) set the year this rhino was born to y.

setMother(Rhino mom) set this rhino's mother to mom.
Precondition: this rhino's mother is null and mom is not null.

setFather(Rhino dad) set this rhino's father to dad.
Precondition: this rhino's father is null and dad is not null.

setTag(int t)
set this rhino’s tag number to t.
Precondition: t is non-negative and has not been assigned to another
rhino.

Comparison Method Description Return type
isOlder(Rhino r) = "r is not null and this rhino is older than r". boolean

isOlder(Rhino r1,
Rhino r2)

(Static method) = "r1 and r2 are not null, and r1 is
older than r2".

boolean

Make sure that the names of your methods match those listed above exactly,
including capitalization. The number of parameters and their order must also
match. The best way to ensure this is to copy and paste. Our testing will
expect those method names, so any mismatch will fail during our testing.
Parameter names will not be tested —you can change the parameter names if
you want.

Each method must be preceded by an appropriate specification, or "spec", as
a Javadoc comment. The best way to ensure this is to copy and paste. After you have pasted, be sure to do
any necessary editing. For example, the spec of a function does not have to say that the function yields a
boolean or int or anything else, because that is known from the header of the method.

A precondition should not be tested by the method; it is the responsibility of the caller to ensure that the
precondition is met. For example, it is a mistake to call method setFather with null for the dad
argument.

It is possible for Rhino r1 to be r2's mother, and vice versa, at the same time. We do not check for such
strange occurrences.

In writing methods setFather (and setMother), be careful! If F is becoming the father of this
Rhino, then F has one more child, and its field that contains its number of children has to be updated
accordingly. The same thing happens with the second constructor.

Do not use if-statements!

You may use conditional expressiosn (... ? ... : ...) only in function toString. Boolean expressions,
using the operators && (AND), || (OR), and ! (NOT), are sufficient to implement the comparison
methods.

Function toString

Here is an example of output from function toString:

"M rhino Fatso. Tag 34. Born 6/2005. Has 2 children."

Here are some points about this output.

1. Exactly one blank separates each piece of information, and the periods are necessary.
2. The 'M' at the beginning means it is a male. Use 'F' for a female.
3. The mother and father are not described in the output of this function.
4. Do not print a negative tag number. If a rhino has a negative tag number, omit all information about

its tag entirely. In the above example, " Tag 34. " would be omitted.
5. If a rhino has exactly 1 child, the word "child" should appear instead of "children".
6. In writing the body of function toString, do not use if-statements or switches. Instead, use the

conditional expression (condition ? expression-1 : expression-2). This is the
only place that you may use the conditional expression.

Class RhinoTester

We require you to build a suite of test cases as you develop class Rhino in a JUnit class RhinoTester.
Make sure that your test suite adheres to the following principles:

Every method in your class Rhino needs at least one test case in the test suite.
The more interesting or complex a method is, the more test cases you should have for it. What makes
a method 'interesting' or complex can be the number of interesting combinations of inputs that method
can have, the number of different results that the method can have when run several times, the
different results that can arise when other methods are called before and after this method, and so on.
Testing should ensure that each part of a method is exercised (executed, evealuated) in at least one
test case.
Here is one important point. If an argument of a method call can be null, there should be a
test case that has null for that argument.
Test each method (or group of methods) as soon as you finish, before moving on to the rest of the
assignment.

How to do this assignment

First, remember that if-statements are not allowed. If your assignment has if-statements, you will be asked to
revise the assignment and resubmit.

Second, develop and test the class in a methodologically sound way, which we outline below. If we
detect that you did not develop it thus, we may ask you to start from scratch on a different assignment.

First, start a new folder on your hard drive that will contain the files for this project. Start every new
project in its own folder.
Second, write a class Rhino using DrJava. In it, declare the fields in class Rhino, compiling often
as you proceed. Fill in the class invariant —the comments that give the meanings of the field and
constraints on them— as you put in the declations of the fields.
Third, after finishing the first section, start a new JUnit class, calling it RhinoTester.
Fourth, implement and test the methods you write in the groups shown below. For each group, (1)
write the methods, (2) write a test procedure in class RhinoTester for the group, (2) add test
cases to it for all the methods you wrote, and then (4) test the methods thoroughly. Do not go on to
the next group of methods until the ones you are working on are correct. If we determine that
you did not follow this way of doing things —for example, you wrote all methods and then tried to
test, we may ask you to set this assignment aside and do another instead. Here are the groups of
methods.

(1) The first constructor and all the getter methods of class
Rhino.
(2) The setter methods.
(3) The second constructor.
(4) Function toString.
(5) The two comparison methods.

With each group, make sure all methods are correct before proceeding to the next group. When adding a

new method, cut and paste the comment and the header from the assignment handout and then edit the
comment. It must have suitable javadoc specifications as well as suitable comments on the field declarations.
The assignment will not be accepted for testing until it does.

Other hints and directions

Do not use if statements.
Remember: a String literal is enclosed in double quotation marks and a char literal is enclosed in
single quotation marks.
Be sure to create the javadoc specification and look at it carefully, to be sure that the methods are
specified thoroughly and clearly.

Procedure for submission

You may submit the assignment whenever you wish, as long as it is complete. Do not submit it if you have
not completed the test cases or if clicking the Test button results in an error.

1. If the class invariant and the javadoc specifications are not appropriate, we will ask you to fix them.

2. We will look at your test cases. If they are inadequate, we will ask you to fix them.

3. If the test cases are adequate, we will test your program. If there are errors, you will be asked to correct
them.

Only when the assignment passes all three categories, will it be accepted as complete.

Submitting the assignment

First, at the top of file Rhino.java, put a comment that says that you looked carefully at the
specifications produced by clicking the javadoc button and checked that the specifications of methods and
the class specification were OK (put this comment after doing what the comments says).

Second, upload files Rhino.java and RhinoTester.java on the CMS. You will be asked to
upload two files: Rhino.java and RhinoTester.java. Make sure you submit .java files. do not submit a file
with the extension/suffix .java~. You can ensure that you do this by setting your preferences in your
operating system so that extensions always appear.

Have fun!

