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Processes vs. Threads

Processes . . .

◮ Multiple
simultaneous
programs

◮ Independent memory
space

◮ Independent open
file-descriptors

Threads . . .

◮ Multiple
simultaneous
functions

◮ Share the same
memory

◮ Share the same open
file-descriptors
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Threads

◮ One copy of the heap

◮ One copy of the code

◮ Multiple stacks
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Threads

#include <pthread.h>

void *main2(void *arg) {

...

}

void *main1(void *arg) {

...

}

int main() {

pthread_t id1, id2;

pthread_create(&id1, NULL, main1, NULL);

pthread_create(&id2, NULL, main2, NULL);

...

}

. . . think multiple processors (or cores)
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pthread

Starting a thread
#include <pthread.h>

...

pthread t id;

err = pthread create(&id, NULL, entry func, arg);

Body of a thread
void *entry func(void *arg) {

...

Exiting current thread
...

pthread exit((void *)return value);

}
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pthread

Co-operative Multi-Threading on Single Processor

#include <sched.h>

...

sched yield()

◮ Store stack pointer, internal state etc. for
current thread

◮ Restore stack pointer, internal state etc. for
another thread

◮ Resume executing other thread

From the caller’s perspective, sched yield() blocks until the other thread calls

sched yield(). Allows multiple threads to share the CPU cooperatively.
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pthread

Non-Cooperative Multi-Threading

Thread library (pthread) pre-empts thread when it
invokes an OS function.

◮ Almost transparent when writing code
◮ Whole new class of bugs: Concurrency bugs

◮ Multiple threads accessing same object
concurrently

◮ Solution: Locks – only one thread can grab lock
◮ More of this is CS414/415
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