
Threads
CS 113: Introduction to C

Instructor: Saikat Guha

Cornell University

Fall 2006, Lecture 11

Threads CS 113, Fall 2006, Lecture 11



Processes vs. Threads

Processes . . .

◮ Multiple
simultaneous
programs

◮ Independent memory
space

◮ Independent open
file-descriptors

Threads . . .

◮ Multiple
simultaneous
functions

◮ Share the same
memory

◮ Share the same open
file-descriptors

Threads CS 113, Fall 2006, Lecture 11



Threads

◮ One copy of the heap

◮ One copy of the code

◮ Multiple stacks

addr=0xFFFFFFFF

addr=0x00000000

Code

Global Static

Global
Dynamic
(Heap)

main()

main1()

main2()

Threads CS 113, Fall 2006, Lecture 11



Threads

#include <pthread.h>

void *main2(void *arg) {

...

}

void *main1(void *arg) {

...

}

int main() {

pthread_t id1, id2;

pthread_create(&id1, NULL, main1, NULL);

pthread_create(&id2, NULL, main2, NULL);

...

}

. . . think multiple processors (or cores)

addr=0xFFFFFFFF

addr=0x00000000

Code

Global Static

Global
Dynamic
(Heap)

main()

main1()

main2()

Threads CS 113, Fall 2006, Lecture 11



pthread

Starting a thread
#include <pthread.h>

...

pthread t id;

err = pthread create(&id, NULL, entry func, arg);

Body of a thread
void *entry func(void *arg) {

...

Exiting current thread
...

pthread exit((void *)return value);

}

Threads CS 113, Fall 2006, Lecture 11



pthread

Co-operative Multi-Threading on Single Processor

#include <sched.h>

...

sched yield()

◮ Store stack pointer, internal state etc. for
current thread

◮ Restore stack pointer, internal state etc. for
another thread

◮ Resume executing other thread

From the caller’s perspective, sched yield() blocks until the other thread calls

sched yield(). Allows multiple threads to share the CPU cooperatively.

Threads CS 113, Fall 2006, Lecture 11



pthread

Non-Cooperative Multi-Threading

Thread library (pthread) pre-empts thread when it
invokes an OS function.

◮ Almost transparent when writing code
◮ Whole new class of bugs: Concurrency bugs

◮ Multiple threads accessing same object
concurrently

◮ Solution: Locks – only one thread can grab lock
◮ More of this is CS414/415

Threads CS 113, Fall 2006, Lecture 11


