
CS1114: Study Guide 2

This document summarizes the topics we’ve covered in the second part of the course.
They closely follow the class slides, but in a more organized and centralized form. Please
refer to the slides for more details.

1 Polygons and convex hulls

A polygon is a set of 2D points (called vertices, as in a graph) connected by edges in a given
sequence. In this class, we’ve been especially interested in a particular kind of polygon:
convex polygons. A convex polygon is a polygon that has the property that for any two
points A and B inside or on the polygon, the line segment connecting A and B is entirely
inside the polygon. Figure 1 shows some examples of convex (and non-convex) polygons.

Figure 1: Some examples of convex and non-convex polygons.

This leads to the definition of a special kind of polygon called the convex hull. The convex
hull of a polygon G is the smallest convex polygon that completely contains G. The convex
hull will be made up of vertices of P (but not necessarily all vertices of G will be on the
hull). Intuitively, the convex hull is what you would get if you took a stretchy rubber band,
stretched it out to contain the polygon, then let it snap to its smallest possible shape. An
example of a convex hull of a polygon is shown in Figure 2. Naturally, the convex hull of a
convex polygon is the polygon itself.

We can also define the convex hull on a point set (instead of a polygon). The convex hull
of a point set P is the smallest convex polygon that contains all of the points. Again, the
vertices of the convex hull will all be points in P . An example of a convex hull of a point
set is shown in Figure 3.

Note that an edge of the convex hull has the property that all points are on one side of
the line passing through that edge. The converse of this is true as well: if a pair of points

1

Figure 2: Convex hull of a polygon.

Figure 3: Convex hull of a point set.

A and B in the point set have the property that all other points are on one side of the line
passing through AB, then the edge AB will be part of the convex hull.

Next, we consider how to find the convex hull of a set of points. Note that we can easily
find a few points that are definitely on the convex hull: for instance, the leftmost point,
the rightmost points, the uppermost point and the lowermost point. In fact, for any vector
representing a direction, the most extreme point in that direction will be part of the convex
hull.

1.1 Algorithms for convex hull

In class we looked at several different algorithms for computing the convex hull (and you
implemented one of these).

Giftwrapping algorithm. The first was the giftwrapping algorithm. The idea behind
the giftwrapping algorithm is to find a point p1 in P that is definitely on the hull, then
work our way around the hull by continually selecting the next point the makes the greatest
“right-hand turn”:

2

GiftWrappingAlgorithm(P):

1. Start with a point p1 ∈ P that is guaranteed to lie on the border of the hull (we chose
the bottom-most point in class, but you can choose any extreme point). Add p1 to the
hull.

2. Find the point p ∈ P that makes the largest “right-hand turn.” That is, if pprev is the
previous point on the convex hull, and ` is the line between the two previous points
in the convex hull (or a horizontal line, in case the previous point is the bottom-most
point) then the p maximizes the angle θ between ` and the line through pprev and `.
Add p to the hull.

3. Repeat step 2 until we get back to p1.

Giftwrapping is an example of an output-sensitive algorithm: the running time depends
on the size of the convex hull (by size, we usually mean the number of vertices on the convex
hull). If n is the size of the point set P (again, the number of points in P) and h is the size
of the convex hull, then the running time of the giftwrapping algorithm is O(nh): for each
vertex on the convex hull, we spend O(n) time looking for the next vertex. In the worst
case, when all the points are on the hull, then the running time will be O(n2). If the points
are randomly distributed (inside a circle, for instance), then we expect that about

√
n points

will be on the convex hull, so the running time of giftwrapping will be O(n
√
n) on average

for this kind of distribution.

Quickhull. We also learned about the quickhull algorithm. Quickhull is a divide-and-
conquer algorithm that, like quicksort, finds the convex hull by dividing the point set P into
two parts, then recursively running quickhull on each part. You won’t need to know the
details of the quickhull algorithm, but you should know that the running time is O(n log n).
Thus, quickhull is not an output-sensitive algorithm; the running time depends only on the
size of the input set.

Applications of the convex hull. In class, we used the convex hull to come up with
a compact descriptor for the shape of the lightstick (we then found the major axis of this
shape to find the direction the lightstick was pointed). However, there are other things the
convex hull can do. In particular, in class we saw how the convex hull can be used for
sorting. In particular, given a list of n numbers x1, x2, . . . , xn, suppose we create a set of 2D
points (x1, x

2
1), (x2, x

2
2), . . . , (xn, x

2
n), i.e., points on a parabola. If we find the convex hull of

this point set, then, starting from the bottommost point (assuming all numbers xi are non-
negative) the order of the points along the convex hull will be the same as the sorted order
of the original numbers. This type of approach, where we solve one problem (in this case,
sorting) by converting it to a different problem (convex hull) and solving the new problem,
is called a reduction: we are reducing the problem of sorting to that of computing the convex
hull. This has implications for the best possible running time of the new algorithm. In this
case, we’ve learned that the best possible running time of a sorting algorithm is O(n log n)—
in general, we can’t come up with a faster sorting algorithm (though we might be able to
for certain specific types of input). This means that we also can’t find the convex hull in

3

faster than O(n log n) time; otherwise, we could come up with a faster sorting algorithm by
converting to convex hull.1

2 Interpolation

Consider the following problem: we’re given the small image below, and want to blow it up
to poster size. How can we do this?

Instead of blowing it up to poster size, let’s just try to blow it up so that it is four times
as wide and four times as tall. That means we need to replace each pixel with a 4× 4 patch
of pixels (i.e., each pixel needs to be replaced with 16 pixels). How do we decide what to
color the new pixels that we’re inserting in between the original pixels? This problem is
called interpolation—we need to figure out the values of an image in between known values.
The general form of interpolation is that we’re given some values of function (not necessarily
an image) at a few sample points in the domain, and we want to compute the value of the
function for the entire domain. For an image, these sample points are the pixel locations of
the original image.

The exact values we fill in depend on our assumptions of how the function behaves. There
are many possible assumptions we could make.

Nearest neighbor interpolation. One of the simplest interpolation schemes is called
nearest-neighbor interpolation. With nearest-neighbor interpolation, we assume that the
value of the function is the same as the value of the closest known sample. For our example
of blowing up an image by a factor of four, this means we would replace each pixel with a
4 × 4 block with the same color as the original pixel. The resulting image would look like
this:

1Two comments about this reduction.

1. Strictly, it is only the case that the combined running time of converting a sorting problem to a convex
hull problem and solving the convex hull problem cannot be less than O(n log n). In theory, if the
conversion process itself took O(n log n) time, then there might still be a faster algorithm for convex
hull. Note that the conversion process in this case takes just O(n) time, however. We just need to
scan through the list of numbers creating a 2D point for each one.

2. Actually, the best algorithms for convex hull work in O(n log h) time, which is faster than O(n log n)
if h is small. However, this doesn’t help us with the sorting problem, since we want to create a point
set where every input point is on the convex hull.

4

The result is pretty blocky, and doesn’t look that great. Our assumption that the values
of the image should be equal to the closest known value is not a very good assumption,
unfortunately. A somewhat better assumption is that the function behaves linearly between
the known samples. This assumption leads to linear interpolation.

Linear interpolation Linear interpolation (or lerp, as it is known in computer graphics,
where it is very commonly used), only really makes sense for one dimensional functions. In
the figure below, filling in the values of the following function given the samples on the left
using linear interpolation results in the function on the left:

We are given a set of samples of the underlying function f(x) at a number of discrete loca-
tions x (e.g., x = 1, 2, 3, . . . in the common case where the samples are at integer locations).
To estimate the value of the function at a particular position x using linear interpolation,
suppose the closest known samples on the left and right of x are (xleft, yleft) and (xright, yright).
The value of at x in our interpolated function f̃ is then computed as:

f̃(x) =
xright − x
xright − xleft

f(xleft) +
x− xleft

xright − xleft
f(xright)

5

If xleft and xright are at consecutive integer locations (e.g., xleft = 1 and xright = 2, then
this simplifies to:

f̃(x) = (xright − x)f(xleft) + (x− xleft)f(xright)

Bilinear interpolation How do we apply linear interpolation in two dimensions? The
answer is bilinear interpolation (bilerp); this time, we define bilinear interpolation only for
an integer grid of known sample points. Given a new point at which we’d like to compute the
value of the function, we find the four nearest sample points, then use linear interpolation
first along the y-direction, then along the x-direction (we would also get the same answer by
interpolating along the x-direction first). This is demonstrated in the figure below:

To compute the value of the function at the green point P , we find the four surrounding
points Q11 = (y1, x1), Q12 = (y1, x2), Q21 = (y2, x1), and Q22 = (y2, x2), then linearly
interpolate along the y-direction to compute the function values at the two blue points R1

and R2. We then linearly interpolate R1 and R2 to compute the value at P . Again, if the
four surrounding points on an integer grid, repectively, then the formula for the estimated
function value at P is:

f̃(P) = (x2−x)(y2−y)f(Q11)+(x−x1)(y2−y)f(Q12)+(x2−x)(y−y1)f(Q21)+(x−x1)(y−y1)f(Q22)

This could also be written in terms of three linear interpolations:

f̃(P) = lerp(x2−x, x−x1, lerp(y2−y, y−y1, f(Q11), f(Q21)), lerp(y2−y, y−y1, f(Q12), f(Q22)))

Using bilinear interpolation, our 4× 4 image looks like this:

6

Compared to nearest neighbor interpolation, this looks much smoother, and not as blocky.
However, we’re not really resolving any more detail about the scene. There are better
interpolation schemes than bilinear interpolation (such as bicubic interpolation), but no
interpolation scheme will really be able to add detail that isn’t present in the original image.
The basic reason for this is that many different larger images, when shrunk down, would
give the same small image. Thus, we can’t expect to recover a larger image perfectly from
a small image. (It’s easier to see this when we take this to its logical conclusion—trying to
blow up a full-resolution image from a single pixel. This is impossible.)

2.1 Convolution

Convolution is an image operator involving two images: a target image and a (usually quite
small) image called a kernel. To convolve (or filter) a image target image I with a kernel, we
run the kernel across each pixel of I, multiply it by the pixels of I in a window of the same
size of the kernel, then add up the results. For instance, if the target image and kernel are:

image =

0 1 0 1 0

1 2 3 4 0

1 1 1 1 0

0 2 4 5 7

1 1 3 4 5

kernel =

0 1 0

1 1 1

0 1 0

7

then the result of convolving image with kernel is:

output =

2 3 5 5 1

4 8 10 9 4

3 7 10 11 8

4 8 15 21 17

2 7 12 17 16

Note that we assumed for this convolution that the image is padded with zeros, for cases
where the convolution kernel spills over the boundary of the image. What the kernel above
does is replace each value in the image with the sum of the value itself, and the values of its
neighbors in the four cardinal directions (NEWS). For instance, the 2 at the (2, 2) location
in the image is replaced with 2 + 1 + 3 + 1 + 1 = 8—the sum of itself and its four neighbors.

Often we use kernels whose values add up to 1—this results in an image that is no brighter
or darker than the original. For instance, to blur an image, we might use the kernel:

blur =

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

This kernel averages every 3× 3 window of an image.

3 Image transformations

What if we want to apply more complex transformations to an image than just simple
scaling. We’ll define a image transformation as a function that maps the 2D coordinates of
an image to a new set of coordinates. We’ll focus especially on linear transformations, i.e.,
transformations of the form:

f(x, y) = (ax+ by, dx+ ey)

for constant coefficients a, b, d, and e. Linear transformations can be represented by a 2× 2
matrix

T =

[
a b
d e

]
and applying the transformation can be done with matrix multiplication, defined as:[

a b
d e

] [
x
y

]
=

[
ax+ by
dx+ ey

]

8

Scaling

A scaling transformation can be represented with a matrix

S =

[
s 0
0 s

]
.

To see this, let’s see what happens when we multiple this matrix by a point

[
x
y

]
:

[
s 0
0 s

] [
x
y

]
=

[
sx
sy

]
This multiplies points by a factor of s. If s > 1 we would be enlarging the image, and if
s < 1, we would be shrinking the image.

Rotation

A rotation by an angle θ can be represented with a matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
Translation and homogeneous coordinates To represent a translation (moving the
image left/right, up/down), we need more than just a linear transformation with a 2 × 2
matrix. For this, we need to introduce an idea known as homogeneous coordinates. We will
play a trick by adding a 1 after the x, y coordinates of a vector (resulting in what we’ll call

9

a 2D homogeneous vector), and switch to using a 3 × 3 matrix (whose last row is always
[0 0 1]). The resulting matrix is an affine transformation with six parameters:

T =

 a b c
d e f
0 0 1


Multiplying an affine transformation by a homogeneous vector gives: a b c

d e f
0 0 1

 x
y
1

 =

 ax+ by + c
dx+ ey + f

1


We can now represent a translation by a vector (s, t) as: 1 0 s

0 1 t
0 0 1

 .
To see why, let’s multiply by a homogeneous vector: 1 0 s

0 1 t
0 0 1

 x
y
1

 =

 x+ s
y + t

1

 .
Composition Linear transformation are composable, as are affine transformations. In
other words, given two affine transformations, a scale Tscale and a rotation Trot, say, we
can apply both in sequence as a composed transformation. This composed transformation
can be computed by simply multiplying the two transformation matrices, e.g. Tscale · Trot,
giving another 3 × 3 matrix. Note that the order of the multiplication matters, and the
transformations will be applied in right-to-left order (e.g., the rotation will be performed first
in the product above). Any number of transformations T1, T2, T3, . . . , Tn can be composed
in this way.

3.1 Inverse mapping

How do we actually apply a transformation to an image? One approach is to take each
pixel in the input image, apply the transformation to its x, y position, then set the resulting
output pixel to the same color as the input pixel. This approach is called forward mapping,
and it has some weird results; for instance, for a rotation or upscaling, we might not “hit”
every pixel in the output image. Thus, we might be left with gaps in our image when we’re
finished:

10

A better approach is called inverse mapping. With inverse mapping, we take each pixel
of the output image, apply the inverse transformation to get the corresponding pixel location
in the input image, then sample the color at that location to figure out what color to assign
to the output pixel. By definition, this guarantees that we will fill in each pixel of the output
image with a color (as long as the corresponding pixel of the input is in bounds). However,
we might hit a fractional pixel in the input image. Thus, we need to use interpolation to get
the value of that pixel. Often, a simple interpolation approach such as bilinear interpolation
works pretty well.

4 Optimization and least squares

A recurring problem throughout the lectures has been that of optimization: we define a cost
(or score) function that we want to minimize (or maximize), and then want to find the best
solution according to that objective function. A simple example is fitting a line to a set of
2D points (also known as linear regression). Suppose we have a set of (noisy) points (xi, yi)
and want to fit a line y = mx+ b to them:

Because of the noise, there is no line that exactly passes through all points. Instead, we seek
the best possible line. How do we define “best”?

The idea is that we’ll come up with a cost (or objective) function Cost(m, b) that measures
how bad a line defined by m and b is, then find the line that minimizes this function. The

11

most natural cost function is one that measures how much the line differs from the given
points. We call these differences residuals; for linear regression, they can be visualized as
vertical distances from each input point to the line:

The length of the residual for a point (xi, yi) is |yi − (mxi + bi)|. Thus, one objective
function could be the sum of residuals:

Cost(m, b) =
n∑

i=1

|yi − (mxi + bi)|

For a variety of reasons, however, we prefer the sum of squared residuals (we’ll explain a few
reasons below):

Cost(m, b) =
n∑

i=1

|yi − (mxi + bi)|2

When using a cost function that is sum of squared residuals, finding the minimum is
known as the least squares problem. How do we find the line that minimizes Cost(m, b)? A
few possible approaches come to mind:

1. Check all possible lines (but there are an infinite number of them)

2. Guess a line at random, check it, and repeat with new random answers until we get a
good answer (not such a good approach).

3. Guess an answer and improve it until we get a good answer (better).

4. Magically compute the right answer (best).

This process of finding the minimum of the function is known as optimization. We’ll
mostly discuss an approach that does a form of 2 above called gradient descent.

Gradient descent. Gradient descent can be visualized as finding the minimum by simu-
lating a ball rolling down the objective function until it reaches the bottom. With gradient
descent, we go through the following procedure:

1. Start at a guess for the right answer (which might be a completely random guess).

12

2. Next, compute the direction of steepest descent—the direction we should move that
will take us furthest downhill (this direction is called the gradient). With a normal 1D
function, this direction will either be “left” or “right”; in 2D it will be a direction in
the plane.

3. Take a step in that direction, making sure that we end up below where we started.

4. Repeat 2-3 until we stop going downhill by very much. We’ve reached a minimum.

Does this approach get us to the right answer? For certain functions, yes, we will reach
the correct answer eventually. This class of functions are called convex. Very similar to a
convex polygon, a convex function is one where the area above the function forms a convex
set—there are no nooks and crannies. Here’s an example of 1D convex and non-convex
function:

Convex functions are “nice”: they always have a single global minimum, and we will
always find this minimum using gradient descent. A quadratic is an example of a convex
function, and the sum of convex functions is always convex; thus, the sum of squared residuals
(at least, of a linear function) is convex, and so we can successfully solve least squares using
gradient descent (this is one reason why least squares is often used).

The other reason why least squares is so common is that it can actually be solved in
closed form. We don’t need to use gradient descent at all: there is a magic formula for
computing the minimum solution. It’s not important to know the details for this course,
but you can think of the problem as defining a linear system in two variables, m and b, and
where we have one equation, yi = mxi + b, for each input point. If we have more than two
points, this is an overconstrained linear system—it has more equations than variables. Least
squares is a technique for solving such overconstrained systems.

13

5 Feature-based object recognition

Now that we know a bit about image transformations and optimization, we can use these
tools to help us do something interesting: object recognition. Suppose we have an image
of an object we’d like to find (a template image), and an image that we’d like to find the
object in (a search image):

There are many possible ways to try and find the search image in the template image.
For instance, we could apply convolution to the two images; if we’re lucky, the peak of the
resulting image will be the location of the search object. However, this might won’t work in
several cases:

1. The object appears at a different scale or orientation in the search image.

2. The object is partially covered by other objects.

3. The lighting in the search image is different than in the template image.

In class, we talked about another approach: using local features.

5.1 Invariant local features

A local feature is a small, distinctive patch of an image—a fingerprint that is likely to
be found in other images of the same object. For instance, “corner-like” features often
make good candidates for such fingerprints. Finding such features in an image is known
as feature detection. Feature detection involves finding the 2D positions of likely features,
as well as coming up with a descriptor vector that describes the appearance of the image
around that feature. Ideally, we want our detected features to be invariant to certain image
transformations, such as rotation, scaling, and changes in brightness or contrast. Here,
invariant means that the feature, and it’s descriptor vector, remain unchanged under these
transformations. If our features achieve invariance, then we can robustly compare fingerprints
across very different images. Using local features for object recognition has several desirable
properties:

1. Locality: Features are local, and therefore some of them can be covered up or not
detected and we can still find the object.

14

2. Distinctive: Distinct features are detected, so we can potentially distinguish objects
in a large database.

3. Quantity: We typically find lots of features in an image.

4. Efficiency: Compared to approaches which match the entire image, the local features
approach can be very fast.

5.2 SIFT

SIFT (Scale-Invariant Feature Transform) is one of the best feature detectors around—it
produces features that are invariant to scaling, rotation, certain changes in illumination, and
small changes in viewpoint (how it does this is left to a computer vision course). It produces
a 128-dimensional descriptor for each detected feature.

5.3 Feature matching

Once we detect features in the template and search images, we need to match features
between them—that is, find similar-looking features in each image. You’ll learn more about
feature matching in Assignment 5, Part 2. For now, assume that we have some technique
for finding matches between 2D features in image 1 and image 2, but these matches are
noisy—there are many wrong matches that we have to deal with this somehow. The next
step involves an algorithm called RANSAC for dealing with such noisy matches.

5.4 Finding image transformations

The next step in our object detection framework is to find an image transformation between
the template image and the search image that describes the position, orientation, and scale
of the object in the search image. Again, we’ll focus on affine transformations, which will
explain many of the transformation we see in practice when doing object recognition.

We now have the following problem: we’re given a set of known matches between the
two images (some of which are incorrect), and we want to find an affine transformation that
explains these matches as well as possible. Let’s refer to our set of matches as

x1, y1 → x′1, y
′
1

x2, y2 → x′2, y
′
2

· · ·
xn, yn → x′n, y

′
n

i.e., the feature at location (x1, y1) in image 1 matches the feature at location (x′1, y
′
1) in

image 2. If all of our matches were exact, then we would want to find the transformation T

15

such that

T

 x1
y1
1

 =

 x′1
y′1
1


T

 x2
y2
1

 =

 x′2
y′1
1


· · ·

T

 xn
yn
1

 =

 x′n
y′n
1


However, our matches aren’t exact. The resulting problem is a slightly more sophisticated

form of linear regression. The basic linear regression problem is fitting a line to a set of points
(x, y), as you saw above. Fitting an affine transformation to pairs of 2D points is a very
similar problem in a higher dimension, and we can use least squares to solve this problem.

We will consider this problem in the next section, but for now observer that—just as
we can fit a line exactly to two (x, y) pairs—we can fit a 2D affine transformation to three
(x, y) → (x′, y′) pairs. To see why, note that each match gives us two equations involving
the parameters of T :

T

 x
y
1

 =

 x′

y′

1

 (1)

 a b c
d e f
0 0 1

 x
y
1

 =

 x′

y′

1

 (2)

which corresponds to the equations

ax+ by + c = x′

dx+ ey + f = y′

Thus we have two linear equations in the six unknowns a, b, c, d, e, f . Given three matches,
we can find six such equations, and can solve for the unknowns (remember that to solve a
linear system, we need as many equations as unknowns). We can solve the linear system
using a matrix inversion in Matlab. Given more than three matches, we can solve a least
squares problem where we want to minimize the squared distances between the given matches
in image 2, and where the transformation thinks those matches should be:

dist

T
 xi
yi
1

 ,
 x′i
y′i
1

2

where dist is the distance between two 2D points.
However, because there are outliers (bad matches), running least squares on all the

matches at once could produce a very bad solution. This is almost exactly the same problem

16

we saw a while ago, when trying to find the “center” of a set of 2D points. The mean (or
centroid) of the set of points is sensitive to outliers (the “Arnold Schwartzenegger” problem),
and could be arbitrarily corrupted by an arbitrarily bad outlier.2 So we need a more robust
objective function, and a way to compute it. This is similar to us deciding to use the median
instead of the mean as a center for a set of 2D points, and coming up with an algorithm for
computing the median.

RANSAC. We need a more robust way of measuring the “goodness” of a potential affine
transformation than the least squares metric. A key observation is that we want to find an
affine transformation than predicts a large number of matches well, even if it predicts a few
(the outliers) poorly. To see this intuition, let’s return to linear regression for a moment.
Consider the following set of 2D points, which approximate a line, but with a few outliers.

The least squares solution is shown, and is indeed corrupted by outliers. Instead, our
new idea is to measure the goodness of a line by counting the number of points that are close
to the line. This completely ignores points that are far from the line, and so this measure is
naturally robust to outliers. To see the idea, consider the two lines below:

2It should be noted here that the mean of a set of input 2D points happens to be the point that minimizes
the sum of squared distances to the input points, i.e., it is the solution to a least squares problem. This is a
beautiful fact.

17

The first line is only close to two points (shown in green), and so is not so great (we
call these green points inliers). On the other hand, the second line has seven inliers, and so
is much better. Given this counting metric, how do we find the best line? Unfortunately,
there is no closed form solution to this problem, unlike with least squares. An alternative
would be to generate random lines and score each one, but random lines might not be very
good. Instead, we’ll use a technique called RANSAC (RAndom SAmple Consensus), which
generates lines to test much more intelligently. Remember that we need two points to fit
a line (and three matches to fit an affine transformation). What RANSAC does is choose
such minimal samples of points/matches at random, generates the model (e.g., line or affine
transformation), and tests that model by seeing how many input points are inliers. We then
return the line with the largest number of inliers. For fitting a line, RANSAC operates as
follows:

Ransac(input: set of 2D points):

1. Randomly select two points.

2. Solve for the corresponding line L.

3. Compute the number of inliers to L, i.e., other points that are close enough to the line.

4. If L has the most inliers so far, save it.

5. Repeat steps 1-4 N times, then return the best L.

In a way, this is like voting—each 2D point votes for the candidate lines that agree with it, and
the winner is the line with the most votes. We an use the same algorithm for fitting an affine
transformation, except that we need three matches to generate a hypothesis transformation,
and we measure how well each other match agrees with a transformation by through a slightly
different measure of agreement. That is, by “agree,” we mean that the transformation maps
a point (xi, yi) in the template image “close” to its matching point (x′i, y

′
i) in the target image

(we don’t expect it to map the point exactly to the target). To define this concretely, we’ll

18

define a threshold t (say 5 pixels), then say a match (xi, yi)→ (x′i, y
′
i) agrees with T if

dist

T
 xi
yi
1

 ,
 x′i
y′i
1

 < t

(where dist is the distance between two 2D points).
Again, to tell how well a transformation T agrees with the set of matches, we can simply

count the number of matches that agree (these are called inliers to the transformation—the
matches that don’t agree are called outliers). We then sample many random sets of three
matches and find the resulting T that agrees with the’ largest number of matches. Here’s
what RANSAC looks like for fitting an affine transformation to a set of 2D matches:

Ransac(input: set of matches):

1. Randomly select three matches.

2. Solve for the corresponding transformation T .

3. Compute the number of inliers to T .

4. If T has the most inliers so far, save it.

5. Repeat steps 1-4 N times, then return the best T .

The RANSAC algorithm works well, and is used in many different computer vision appli-
cations. RANSAC relies on two parameters: t, the “closeness” threshold, and N , the number
of rounds (though if we expect to have a certain percentage of inliers, and want to compute
the right T with a given probability, e.g. 99.9999%, then we can compute the N we need).
One thing to note: the more outliers we have, the more rounds we should run the algorithm.
This is because each time we generate a hypothesis, we need to select three points, and we
only really get a good model if all three are inliers. If we choose even one outlier, our model
will very likely be bad. And this is pretty likely to happen: if 1

3
of the matches are wrong,

then the changes of picking one wrong match among three random matches is almost 2
3
.

This is also why we like to choose the minimal possible number of matches to generate a
transformation: choosing more than the minimum (e.g., choosing 4 or 5 points) dramatically
increases the likelihood that we’ll choose an outlier.

6 Clustering and image segmentation

At the beginning of the course, we looked at the problem of finding a red lightstick in an
image, for which the first step was to threshold the image into red and non-red pixels. You can
think of this as segmenting out the lightstick from the background. A more general version
of this problem is to segment out all of the objects in an arbitrary image, for instance this
one:

19

This is a central (and unsolved) problem in computer vision. A state-of-the-art automatic
algorithm for image segmentation produces the result on the right, where pixel groupings
are shown by color. This is pretty good—the tree, beach, water, and sky are each mostly
one segment—although not perfect. We looked at a very simple version of this problem
called color quantization. Suppose we want to take an image with a full color spectrum
(recall that an RGB image with 256 possible values per color channel can contain up to
256× 256× 256 = 16, 777, 216 distinct colors), and color it with a “palette” of just k colors
(where k is a much smaller number, such as 4, 16, or 256). We might want to quantize the
image into a smaller number of colors in order to segment the image, or to compress it, for
instance. Here’s an example of quantizing a full color image to just eight colors:

Given a target number of k colors in our palette, how can we choose the best k colors
with which to represent the image—that is, the set of colors that will make the image look
most like the original image? We would somehow like to chose a set of colors that are similar
to the most colors in the input image. This is an example of a clustering problem: given all
of the colors present in the input image, group them into k clusters of similar colors, and
choose a representative for each group. To illustrate this, here’s a diagram that shows how
the colors in an input image look in color space:

20

(Image courtesy Wikipedia). The left image is the original image, and the right is a
visualization of the RGB color space (since three dimensions are difficult to visualize on the
page, this only plots the R and G components of the colors). For each pixel in the original
image, a plot is pointed in the right image whose coordinates are the R and G channels of
that pixel’s color (R on the x-axis, and G on the y-axis). While these pixels don’t naturally
group into a set of well-separated clusters, we can still divide them up into groups—this is
shown in the image on the right by the blue lines partitioning up the color space, and by the
blue points representing the “centers” of each cluster. Given this clustering, we could assign
each pixel in the input image the color of the closest cluster center in RGB space, and the
result would be our quantized image.

Clustering problems are widespread in many different domains. Businesses often want to
cluster our customers into different groups in order to better tailor their marketing to specific
types of people (market segmentation). News aggregation websites like Google Maps cluster
news stories from different sources into groups of stories that are all on the same basic topic.
And clustering can be use to find epicenters of disease outbreak (such as the recent swine
flu epidemic).

Given a set of points in some dimension (three, in the case of colors), how can we compute
a good clustering? We first have to define what we mean by good. This definition should
capture the fact that we want all of the points in a cluster to be close to each other.

In our case, we will state the clustering problem as follows: we are given a set of n
data points x1, x2, . . . , xn (represented by vectors of some dimension), and a way to compute
distances between these points (for instance, the typical Euclidean distance between vectors).
An example clustering of 2D points (with four clusters) is shown below:

21

How do we define the clustering problem? We want to create a set of clusters and assign
each point to a single cluster so as to minimize some underlying cost function that rates the
“goodness” of a clustering. What should this cost function look like? Intuitively, we want
a cost function that prefers clusterings where similar points are close together, and where
dissimilar points are far away. One of the simplest approaches is known as k-means.

6.1 k-means

The k-means clustering problem is as follows: we are given the number of clusters k we
should compute (e.g., k = 4). We need to find (a) a set of cluster centers x̄1, x̄2, . . . , x̄k, and
(b) an assignment of each point xi to a cluster Cj, so as to minimize the sum of squared
distances between points and their assigned cluster center. That is, we want to find the
cluster centers and cluster assignments that minimize the following objective function:

cost(x̄1, ..., x̄k, C1, . . . , Ck) =
k∑

j=1

∑
xi∈Cj

|xi − x̄j|2

At first, this problem looks like the kind of least squares problems we’ve seen in the past
(such as line fitting), and which we know are easy to solve. Unfortunately, however, there’s a
critical difference: we need to find the cluster centers and the cluster assignments at the same
time, and this makes the problem much more difficult. If we knew either of the two then the
problem would be easy: given the cluster centers, the optimal assignment is to assign each
data point to the closest cluster center; given the cluster assignment, the optimal centers are
the means of each cluster. But we need to compute both.

This small difference means that, far from being easy to solve, the k-means problem is in
a class of problems that are extremely difficult. No known algorithm exists for computing the
optimal k-means in less than exponential time in n (essentially, we have to try every possible
clustering to find the one, and there are O(kn) possible clusterings). Compared to polynomial
time algorithms for other problems we have seen—sorting (O(n2)), median finding (O(n)),
convex hull (O(n2)), exponential time algorithms are much worse (it is similar to comparing
snail sort to quicksort). The class of hard problems of which k-means is a member is known

22

as NP -hard problems (NP stands for non-deterministic polynomial time, though you won’t
learn why until much later).

Should we just give up? No, we can still hope to create a fast algorithm that’s pretty
good (for instance, one that always gets an answer that is pretty close to the optimal one).
In class we learned about one approach called Lloyd’s algorithm, which iterates between
computing cluster centers and cluster assignments.

23

