Sequences II

Administrivia

- Assignments:
- A5P2 due on Friday
- Quiz Tuesday, 4/24
- Final project proposals due on CMS by this Thursday

Google's PageRank

Cornell University

Google's PageRank

Google's PageRank

Example
(The ranks are an eigenvector of the transition matrix)

Modeling Texture

- What is texture?
- An image obeying some statistical properties
- Similar structures repeated over and over again
- Often has some degree of randomness

Markov Random Field

- A Markov random field (MRF)
- generalization of Markov chains to two or more dimensions.
- First-order MRF:
- probability that pixel X takes a certain value given the values of neighbors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D :

$$
P(\mathbf{X} \mid \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})
$$

- Higher order MRF's have larger neighborhoods

Texture Synthesis

[Efros \& Leung, ICCV 991

- Can apply 2D version of text synthesis

More Synthesis Results

More Results

- reptile skin

- aluminum wire

Image-Based Text Synthesis

r Dick Gephardt was fai Dick Gephardt was fa nly asked, "What's your tions?" A heartfelt sigh tory about the emergen ory about the emerge s against Clinton. Bo 5 people about continuir rdt began, patiently obs , that the legal system h

 ${ }_{\text {rsid }}$ rat rocel oh f He icrt 'the ife i...' Ho faut, ins iry. 11 vecoluat it becos harder to lave.. 'thico it, ilde round itself, at "this daily \cdot. ${ }^{\text {timen }}$ in ${ }^{\gamma}{ }^{\text {r }}$ Mconeving rooms," as House Denvimeall ${ }^{1}$ oll miconeving Medi,
of ricasescribeditastall. He fail tanewa
for yerout he left a ringing questiona " t Lit n jun robmore years of Monica Lewimeraxe, II, ${ }_{\text {ar }}$ axit quyinda Tripp?" That now seericas braitt niomoft Political comedian Al Frameft howi dianobimext phase of the story willefait ${ }^{-12}$
 yor 1 thg de-them ${ }^{2}$ deutt roco $\frac{1}{2}$ deann at 'merit as icn '. ams tostcca, ladotat -1 nine"

 $\ddot{u}_{2}{ }^{\text {ne }}$ estrithg tn the tinsensattonibe t
 is A aroorful riff on the looming "' A rar rntions?" A heartfelt sigh vatî . ${ }^{n 11}$, s_{\sim} story about the emergenent $\hat{S}_{1}{ }^{4}$ t les against Clinton. "Boyoatelln un ?, t'ing people about continuinla. vat $i_{r^{f}}$ Uardt began, patiently obst $"$
 ${ }^{4}{ }^{\prime \prime}$, ams, that the legal system huir ${ }^{2}$

He years od itself, at trripp?" Thes harordate Hpp?' Tripp?'s coms ", ars ol come f hat "that ad 1 conical encat at lasticaf itself s," as Inat last fal cout it becomes hardex to laundailf ay red itse round itself, to "this daily nd itselof Hed itse yound itself, at "this daily nd itselof Heft a Leving rooms," as House Dene loms da eving rouescribed it last fall. He failan Azom itsees arout he left a xinging questiomed itself " as Hounore years of Monica Lewring ars oro, st fal'a rinda Tripp?" That now seeng itse.ndi quest he Political comedian Al Fran 2 d itiewi traiame lext phase of the story will. H1. He fa ars ore years datn. He fast nbes Houng questic ing inda Tripp?" \& questica rene lears otitioouse ouëcolitical conaca Lewingrow se last fall. He
iff oeckemer rind ariont wat fabc thensis at stealy obou," penry coling th the tinsensatiomem h emenar Dick Gephardt was fainghart kes fal rful riff on the looming ": at tlyo eoophonly asked, "What's yourtfelt sig abes fations?" A heartfelt sigh rie abol erdt systory about the emergene about eat bckes against Clinton. "Boyst com at Gckes a di Geng people about continuins artin riff aoardt began, patiently obsleplem ut thes, that the legal system hergent st Cling with this latest tangemem rt mis youist Cfut tineboohair thes aboui yonsighstathst Crhtht's' tlyst Clinth

Author recognition

- Simple problem:

Given two Markov chains, say Austen (A) and Dickens (D), and a string s (with n words), how do we decide whether A or D wrote s ?

- Idea: For both A and D, compute the probability that a random walk of length n generates s

Probability of a sequence

- What is the probability of a given n-length sequence s ?

$$
s=s_{1} s_{2} s_{3} \ldots s_{n}
$$

- Probability of generating $s=$ the product of transition probabilities:

Likelihood

- Compute this probability for A and D

$$
\operatorname{Pr}(s \mid A)
$$

"likelihood" of A
$\operatorname{Pr}(s \mid D)$
"likelihood" of D
$\operatorname{Pr}(s \mid A)>\operatorname{Pr}(s \mid D)$
Jane Austen wrote s
$\operatorname{Pr}(s \mid A)<\operatorname{Pr}(s \mid D)$
Charles Dickens wrote s

$$
\operatorname{Pr}(s \mid A) \underset{\text { ??? }}{=} \operatorname{Pr}(s \mid D)
$$

Problems with likelihood

1. Most strings of text (of significant length) have probability zero - Why?
2. Even if it's not zero, it's probably extremely small

- What's 0.01 * 0.01 * 0.01 * ... (x200) ... * 0.01?
- According to Matlab, zero
- How can we fix these problems?

