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Administrivia 

 

 A5P1 due tomorrow (demo slots available) 

 A5P2 out this weekend, due 4/19 

 

 Prelim 2 on Tuesday 

– Quizzes available Monday 

 

 Midterm course evaluations 
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SIFT Matching Demo 
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Last time: k-means 

4 

Legend 

- centers (means) 

- clusters 



k-means 

 Idea: find the centers that minimize the 
sum of squared distances to the points 

 

 Objective: 
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A greedy method for k-means 
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A greedy method for k-means 

 Unfortunately, this doesn’t work that well 

 

 The answer we get could be much worse 
than the optimum 

 

 However, if we change our objective (e.g., 
k-centers, then we get an answer within 2 
times the cost of the best answer 
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“Hill climbing” 
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Back to k-means 

 There’s a simple iterative algorithm for k-
means 

– Lloyd’s algorithm 

 

1. Start with an initial set of means 

– For instance, choose k points at random from 
the input set 

2. Assign each point to the closest mean 

3. Compute the means of each cluster 

4. Repeat 2 and 3 until nothing changes 
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Lloyd’s algorithm 

Demo 
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Lloyd’s algorithm 

 Does it always terminate? 

– Yes, it will always converge to some solution 

– Might be a local minima of the objective 
function 

 

 

 

 

– Error decreases after every iteration 

– Error could be arbitrarily bad 
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Questions? 
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Possible algorithms 

 

1. Greedy algorithms 

– Do what seems best at any given point 

– Example: making change 
 

2. Iterative algorithms 

– Start with some answer, take a small step to 
improve it, repeat until it doesn’t get better 

– Examples: Lloyd’s algorithm for k-means, 
bubble sort, hill climbing 
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Where we are so far 

 Greedy algorithms and iterative 
algorithms sometimes give the right 
answer (e.g., making change with U.S. 
currency) 
 

 Some clustering objective functions are 
easier to optimize than others: 

– k-means  very hard 

– k-centers  very hard, but we can use a 
greedy algorithm to get within a factor of two 
of the best answer 
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Back to graphs 

 We can also associate a weight with each edge 
(e.g., the distance between cities) 
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Spanning trees 

 A spanning tree of a graph is a subgraph that     
(a) connects all the vertices and (b) is a tree 
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spanning tree on n vertices? 



Graph costs 

 We’ll say the cost of a graph is the sum of 
its edge weights 
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Minimum spanning trees 

 We define the minimum spanning tree (MST) of a 
graph as the spanning tree with minimum cost 

 (Suppose we want to build the minimum length 
of track possible while still connecting all the 
cities.) 
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MST: Cost = 1750 

(Eurorail needs to build 1750 mi of track at minimum) 



Minimum spanning trees 

 This is an optimization problem where the 
objective function is the cost of the tree 

 Can you think of a greedy algorithm to do 
this? 
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Minimum spanning tree 

 Greedy algorithm: 
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Minimum spanning tree 

 This greedy algorithm is called Kruskal’s 
algorithm 

 

 

 

 

 

 

 

 Not that simple to prove that it gives the MST 

 How many connected components are there after adding 
the kth edge? 
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Kruskal’s algorithm 

 

 Start with an empty graph 

 Sort edges by weight, in increasing order 

 Go through each edge in order 

– If adding edge creates a cycle, skip it 

– Otherwise, add the edge to the graph 
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Back to clustering 

 We can define the clustering problem on 
graphs 
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Clustering using graphs 

 Clustering  breaking apart the graph by 

cutting long edges 

 

 

 

 

 

 

 

 Which edges do we break? 
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Spacing as a clustering metric 

 Another objective function for clustering: 

– Maximize the minimum distance between 
clusters 

– (Called the spacing.) 
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spacing 

Cool fact 

 We compute the clusters with the 
maximum spacing during MST! 

 To compute the best k clusters, just stop 
MST construction k-1 edges early 
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Proof of cool fact 

 Suppose this wasn’t true – then someone 
could give us a different clustering with a 
bigger spacing 

 Let C be our MST clustering, and let D be 
the purportedly better one 

 There must be two nodes u and v in 
different clusters in D but in the same 
cluster in C 

 There’s a path between u and v in C, and 
at some point this path crosses a cluster 
boundary in D 
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Pictorial proof 
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Demo 

 http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/index.html 
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Where we are so far 

 Greedy algorithms work sometimes (e.g., 
with MST) 
 

 Some clustering objective functions are 
easier to optimize than others: 

– k-means  very hard 

– k-centers  very hard, but we can use a 
greedy algorithm to get within a factor of two 
of the best answer 

– maximum spacing  very easy!  Just do MST 
and stop early (this gives exact answer) 
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Back to image segmentation 
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Questions? 
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Greedy algorithm for graph 
coloring? 
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