

Segmentation and greedy algorithms

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 A5P1 due tomorrow (demo slots available)

 A5P2 out this weekend, due 4/19

 Prelim 2 on Tuesday

– Quizzes available Monday

 Midterm course evaluations

2

http://www.cs.cornell.edu/courses/cs1114
http://www.cs.cornell.edu/courses/cs1114
http://www.cs.cornell.edu/courses/cs1114

SIFT Matching Demo

3

Last time: k-means

4

Legend

- centers (means)

- clusters

k-means

 Idea: find the centers that minimize the
sum of squared distances to the points

 Objective:

5

A greedy method for k-means

6

A greedy method for k-means

 Unfortunately, this doesn’t work that well

 The answer we get could be much worse
than the optimum

 However, if we change our objective (e.g.,
k-centers, then we get an answer within 2
times the cost of the best answer

7

“Hill climbing”

8

Back to k-means

 There’s a simple iterative algorithm for k-
means

– Lloyd’s algorithm

1. Start with an initial set of means

– For instance, choose k points at random from
the input set

2. Assign each point to the closest mean

3. Compute the means of each cluster

4. Repeat 2 and 3 until nothing changes

9

Lloyd’s algorithm

Demo

10

Lloyd’s algorithm

 Does it always terminate?

– Yes, it will always converge to some solution

– Might be a local minima of the objective
function

– Error decreases after every iteration

– Error could be arbitrarily bad

11

Questions?

12

Possible algorithms

1. Greedy algorithms

– Do what seems best at any given point

– Example: making change

2. Iterative algorithms

– Start with some answer, take a small step to
improve it, repeat until it doesn’t get better

– Examples: Lloyd’s algorithm for k-means,
bubble sort, hill climbing

13

Where we are so far

 Greedy algorithms and iterative
algorithms sometimes give the right
answer (e.g., making change with U.S.
currency)

 Some clustering objective functions are
easier to optimize than others:

– k-means  very hard

– k-centers  very hard, but we can use a
greedy algorithm to get within a factor of two
of the best answer

14

Back to graphs

 We can also associate a weight with each edge
(e.g., the distance between cities)

15

Paris

Berlin

London

Rome

Frankfurt

Vienna
Prague

Naples Warsaw

Hamburg

200

400

100

400

300

200

150

100

100

250

150

250

Spanning trees

 A spanning tree of a graph is a subgraph that
(a) connects all the vertices and (b) is a tree

16 Spanning trees

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna
Prague

Naples
Warsaw

Hamburg
200

400

100

300

200

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

150
100

250

150

250
Q: How many edges are there in a

spanning tree on n vertices?

Graph costs

 We’ll say the cost of a graph is the sum of
its edge weights

17

Paris

Berlin

London

Rome

Frankfurt

Vienna
Prague

Naples
Warsaw

Hamburg
200

400

100

300

200

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

150
100

250

150

250

Cost = 200 + 200 + 100 +

 400 + 300 + 100 +

 250 + 150 + 250 = 1950

Cost = 200 + 400 + 100 +

 400 + 150 + 250 +

 100 + 150 + 250 = 2000

Minimum spanning trees

 We define the minimum spanning tree (MST) of a
graph as the spanning tree with minimum cost

 (Suppose we want to build the minimum length
of track possible while still connecting all the
cities.)

18

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

100

400

200
100

100

250

150

250

MST: Cost = 1750

(Eurorail needs to build 1750 mi of track at minimum)

Minimum spanning trees

 This is an optimization problem where the
objective function is the cost of the tree

 Can you think of a greedy algorithm to do
this?

19

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Minimum spanning tree

 Greedy algorithm:

20

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

100

400

200
100

100

250

150

250

Minimum spanning tree

 This greedy algorithm is called Kruskal’s
algorithm

 Not that simple to prove that it gives the MST

 How many connected components are there after adding
the kth edge?

21

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

100

400

200
100

100

250

150

250

Kruskal’s algorithm

 Start with an empty graph

 Sort edges by weight, in increasing order

 Go through each edge in order

– If adding edge creates a cycle, skip it

– Otherwise, add the edge to the graph

22

Back to clustering

 We can define the clustering problem on
graphs

23

12

9

4

5

7

10

11

8

4 8

Clustering using graphs

 Clustering  breaking apart the graph by

cutting long edges

 Which edges do we break?

24

12

9

4

5

7

10

11

8

4 8

Spacing as a clustering metric

 Another objective function for clustering:

– Maximize the minimum distance between
clusters

– (Called the spacing.)

25

spacing

Cool fact

 We compute the clusters with the
maximum spacing during MST!

 To compute the best k clusters, just stop
MST construction k-1 edges early

26

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

400

100

400

300

200

150

100

100

250

150

250

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg
200

100

200
100

100

250

150

250

2 clusters with max spacing (=400)

400

Proof of cool fact

 Suppose this wasn’t true – then someone
could give us a different clustering with a
bigger spacing

 Let C be our MST clustering, and let D be
the purportedly better one

 There must be two nodes u and v in
different clusters in D but in the same
cluster in C

 There’s a path between u and v in C, and
at some point this path crosses a cluster
boundary in D

27

Pictorial proof

28

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

200

100

200

100

100

250

150

250

D

400

Demo

 http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/index.html

29

Where we are so far

 Greedy algorithms work sometimes (e.g.,
with MST)

 Some clustering objective functions are
easier to optimize than others:

– k-means  very hard

– k-centers  very hard, but we can use a
greedy algorithm to get within a factor of two
of the best answer

– maximum spacing  very easy! Just do MST
and stop early (this gives exact answer)

30

http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/index.html

Back to image segmentation

31

Questions?

32

Greedy algorithm for graph
coloring?

33

