Image segmentation

- Given an image, can we find and segment all the objects?
Why image segmentation?

- Makes the image much easier to analyze
 - Large number of pixels \rightarrow small number of segments

- Find structures we care about (e.g., lightsticks, bones)

- Compression

Image segmentation

- A (much) more difficult version of thresholding to find the red lightstick
 - We don’t know
 - what colors the objects are
 - how many objects there are
 - whether each object is even a constant color
Image segmentation

- To start with, we’ll look at a very simple version of segmentation

- **Color quantization**
 - Take an image with (possibly) many colors, convert it to an image with a small number of colors

Demo

How do we quantize the colors?

- Option 1: Could choose a fixed *palette* (red, green, blue, purple, white, ...)

- Option 2: Could optimize the palette for a given image
How do we compute the optimal palette?

- This is an example of a *clustering* problem

1. Find groups of pixels (clusters) that have similar color (i.e., similar RGB values)
2. Assign all the pixels in each cluster the same color

Applications of clustering

- **Economics or politics**
 - Finding similar-minded or similar behaving groups of people (market segmentation)
 - Find stocks that behave similarly

- **Spatial clustering**
 - Earthquake centers cluster along faults

- **Social network analysis**
 - Recognize communities of similar people
Clustering

- The distance between two items is the distance between their vectors

- We’ll also assume for now that we know the number of clusters
Clustering algorithms

- There are many different approaches

- How is a cluster represented?
 - Is a cluster represented by a data point, or by a point in the middle of the cluster?

- What algorithm do we use?
 - An interesting class of methods uses graph partitioning
 - Edge weights are distances
One approach: *k*-means

- Suppose we are given n points, and want to find k clusters
- We will find k cluster centers (or means), and assign each of the n points to the nearest cluster center \bar{x}_j
 - A *cluster* is a subset of the n points, called C_j
 - We’ll call each cluster center a *mean*

How do we define the best k means?
k-means

- Idea: find the centers that minimize the sum of squared distances to the points

- Objective:

 Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters $C_1, C_2, \ldots C_k$ and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

 $$
 \sum_{j=1}^{k} \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2
 $$

Optimizing k-means

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters $C_1, C_2, \ldots C_k$ and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$
\sum_{j=1}^{k} \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2
$$

- This is called an *objective function*
- Goal is to find the clusters and means that minimize this objective function
- How do we do this?
Optimizing k-means

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters C_1, C_2, \ldots, C_k and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$\sum_{j=1}^{k} \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

- **Brute-force approach:**
 1. Try every possible clustering
 - (The best mean for a cluster is just the average of the cluster elements)
 2. Check the value of the objective for this clustering
 3. Pick the clustering that gives the minimum value

- How much work is this?
 - (How many possible clusterings are there?)
Optimizing k-means

Given input points $x_1, x_2, x_3, \ldots, x_n$, find the clusters $C_1, C_2, \ldots C_k$ and the cluster centers $\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots, \bar{x}_k$ that minimize

$$\sum_{j=1}^{k} \sum_{x_i \in C_j} |x_i - \bar{x}_j|^2$$

- The bad news: it is practically impossible to find the global minimum of this objective function
 - no one has ever come up with an algorithm that is faster than exponential time (and probably never will)
- There are many problems like this (called NP-hard)

Optimizing k-means

- It’s possible to prove that this is a hard problem (you’ll learn how in future CS courses – it involves reductions)
- What now?
- We shouldn’t give up... it might still be possible to get a "pretty good" solution
Greedy algorithms

- Many CS problems can be solved by repeatedly doing whatever seems best at the moment
 - I.e., without needing a long-term plan
- These are called greedy algorithms
- Example: sorting by swapping out-of-order pairs (e.g., bubble sort)

Making change

- For US currency (quarters, dimes, nickels, pennies) we can make change with a greedy algorithm:
 1. While remaining change is > 0
 2. Give the highest denomination coin whose value is >= remaining change

41 cents: 🅱️ ₪ ₪ ₫

- What if our denominations are 50, 49, and 1?
 - How should we give back 98 cents in change?
 - Greedy algorithms don’t always work...
 - (This problem requires more advanced techniques)
A greedy method for k-means

- Pick a random point to start with, this is your first cluster center
- Find the farthest point from the cluster center, this is a new cluster center
- Find the farthest point from any cluster center and add it
- Repeat until we have k centers
A greedy method for k-means

- Unfortunately, this doesn’t work that well
- The answer we get could be much worse than the optimum

The k-centers problem

- Let’s look at a related problem: k-centers
- Find k cluster centers that minimize the maximum distance between any point and its nearest center
 - We want the worst point in the worst cluster to still be good (i.e., close to its center)
 - Concrete example: place k hospitals in a city so as to minimize the maximum distance from a hospital to a house
An amazing property

- This algorithm gives you a solution that is no worse than twice the optimum
- Such results are sometimes difficult to achieve, and the subject of much research
 - Mostly in CS6810, a bit in CS4820
 - You can’t find the optimum, yet you can prove something about it!
- Sometimes related problems (e.g. \(k\)-means vs. \(k\)-centers) have very different guarantees

Next time

- More on clustering