Fitting image transformations

Prof. Noah Snavely
CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

- A4 due tomorrow, A5 up next
Next couple weeks

- How do we detect an object in an image?

- Combines ideas from image transformations, least squares, and robustness

Object matching in three steps

1. Detect features in the template and search images

2. Match features: find “similar-looking” features in the two images

3. Find a transformation T that explains the movement of the matched features

We started talking about this part last time
Affine transformations

- A 2D affine transformation has the form:

\[
T = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 ax + by + c \\
 dx + ey + f \\
 1
\end{bmatrix}
\]

Fitting affine transformations

- We will fit an affine transformation to a set of feature matches
 - Problem: there are many incorrect matches
Linear regression

Testing goodness

- Idea: count the number of points that are “close” to the line

Score = 7
Testing goodness

- How can we tell if a point agrees with a line?
- Compute the distance the point and the line, and threshold

- If the distance is small, we call this point an inlier to the line
- If the distance is large, it’s an outlier to the line
- For an inlier point and a good line, this distance will be close to (but not exactly) zero
- For an outlier point or bad line, this distance will probably be large

- Objective function: find the line with the most inliers (or the fewest outliers)
Optimizing for inlier count

- How do we find the best possible line?

![Graph](image)

Algorithm (RANSAC)

1. Select two points at random
2. Solve for the line between those points
3. Count the number of inliers to the line L
4. If L has the highest number of inliers so far, save it
5. Repeat for N rounds, return the best L
Testing goodness

- This algorithm is called RANSAC (RANdom SAmple Consensus) – example of a randomized algorithm
- Used in an amazing number of computer vision algorithms
- Requires two parameters:
 - The agreement threshold (how close does an inlier have to be?)
 - The number of rounds (how many do we need?)

Randomized algorithms

- Very common in computer science
 - In this case, we avoid testing an infinite set of possible lines, or all $O(n^2)$ lines generated by pairs of points
- These algorithms find the right answer with some probability
- Often work very well in practice
Questions?

Very similar idea

- Given two images with a set of feature matches, how do we compute an affine transform between the two images?
Multi-variable fitting

- Let’s consider 2D affine transformations
 - maps a 2D point to another 2D point
 \[
 T = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
 \end{bmatrix}
 \]

- We have a set of \(n \) matches
 \[
 \begin{align*}
 \begin{bmatrix} x_1 & y_1 \end{bmatrix} & \rightarrow \begin{bmatrix} x_1' & y_1' \end{bmatrix} \\
 \begin{bmatrix} x_2 & y_2 \end{bmatrix} & \rightarrow \begin{bmatrix} x_2' & y_2' \end{bmatrix} \\
 \begin{bmatrix} x_3 & y_3 \end{bmatrix} & \rightarrow \begin{bmatrix} x_3' & y_3' \end{bmatrix} \\
 \vdots \\
 \begin{bmatrix} x_n & y_n \end{bmatrix} & \rightarrow \begin{bmatrix} x_n' & y_n' \end{bmatrix}
 \end{align*}
 \]

Fitting an affine transformation

- Consider just one match
 \[
 \begin{bmatrix} x_1 & y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_1' & y_1' \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 y_1 \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_1' \\
 y_1' \\
 1
 \end{bmatrix}
 \]
 \[
 \begin{align*}
 ax_1 + by_1 + c &= x_1' \\
 dx_1 + ey_1 + f &= y_1'
 \end{align*}
 \]

- 2 equations, 6 unknowns \(\rightarrow \) we need at least 3 matches, but can fit \(n \) using least squares
Fitting an affine transformation

- This is just a bigger linear system, still (relatively) easy to solve

- Really just two linear systems with 3 equations each (one for a,b,c, the other for d,e,f)

- We’ll figure out how to solve this in a minute

In other words:
- Find 2D affine xform T that maps points in image 1 as close as possible to their matches in image 2
Back to fitting

- Just like in the case of fitting a line or computing a median, we have some bad data (incorrect matches)

These outliers will cause problems with fitting the xform

How do we fix this?

- RANSAC to the rescue!
Generating and testing an xform

- From set of matches, select 3 at random
- Fit a transformation T to the selected matches
- Count inliers

Transform Fitting Algorithm (RANSAC)

1. Select three matches at random
2. Solve for the affine transformation T
3. Count the number of matches that are inliers to T
4. If T has the highest number of inliers so far, save it
5. Repeat for N rounds, return the best T
How do we solve for T given 3 matches?

- Three matches give a linear system with six equations:

\[
\begin{align*}
[x_1 \ y_1] & \rightarrow [x_1' \ y_1'] \\
ax_1 + by_1 + c &= x_1' \\
dx_1 + ey_1 + f &= y_1'
\end{align*}
\]

\[
\begin{align*}
[x_2 \ y_2] & \rightarrow [x_2' \ y_2'] \\
ax_2 + by_2 + c &= x_2' \\
dx_2 + ey_2 + f &= y_2'
\end{align*}
\]

\[
\begin{align*}
[x_3 \ y_3] & \rightarrow [x_3' \ y_3'] \\
ax_3 + by_3 + c &= x_3' \\
dx_3 + ey_3 + f &= y_3'
\end{align*}
\]

Two 3x3 linear systems

\[
\begin{align*}
ax_1 + by_1 + c &= x_1' \\
ax_2 + by_2 + c &= x_2' \\
ax_3 + by_3 + c &= x_3'
\end{align*}
\]

\[
\begin{align*}
dx_1 + ey_1 + f &= y_1' \\
dx_2 + ey_2 + f &= y_2' \\
dx_3 + ey_3 + f &= y_3'
\end{align*}
\]
Solving a 3×3 system

$$ax_1 + by_1 + c = x_1'$$
$$ax_2 + by_2 + c = x_2'$$
$$ax_3 + by_3 + c = x_3'$$

- We can write this in matrix form:

$$\begin{bmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1 \\
\end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c \\
\end{bmatrix} = \begin{bmatrix}
 x_1' \\
 x_2' \\
 x_3' \\
\end{bmatrix}$$

- Now what?

Finding the object boundary
Questions?

Object matching in three steps

1. Detect features in the template and search images

2. Match features: find “similar-looking” features in the two images

 How do we do this part?

3. Find a transformation T that explains the movement of the matched features
SIFT Features

- **Scale-Invariant Feature Transform**

Properties of SIFT

- Extraordinarily robust matching technique
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
Do these two images overlap?

Answer below