

Fitting image transformations

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 A4 due tomorrow, A5 up next

2

http://www.cs.cornell.edu/courses/cs1114
http://www.cs.cornell.edu/courses/cs1114

Next couple weeks

 How do we detect an object in an image?

 Combines ideas from image
transformations, least squares, and
robustness

3

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

5

sift

We started talking about this part last time

Affine transformations

 A 2D affine transformation has the form:

6

Fitting affine transformations

 We will fit an affine transformation to a set
of feature matches

– Problem: there are many incorrect matches

7

Linear regression

8

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

11

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Testing goodness

 How can we tell if a point agrees with a line?

 Compute the distance the point and the line, and
threshold

12

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 If the distance is small, we call this point an inlier
to the line

 If the distance is large, it’s an outlier to the line

 For an inlier point and a good line, this distance
will be close to (but not exactly) zero

 For an outlier point or bad line, this distance will
probably be large

 Objective function: find the line with the
most inliers (or the fewest outliers)

13

Optimizing for inlier count

 How do we find the best possible line?

14

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Algorithm (RANSAC)

1. Select two points at random

2. Solve for the line between those point

3. Count the number of inliers to the line L

4. If L has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best L

15

Testing goodness

 This algorithm is called RANSAC (RANdom
SAmple Consensus) – example of a
randomized algorithm

 Used in an amazing number of computer
vision algorithms

 Requires two parameters:

– The agreement threshold (how close does an
inlier have to be?)

– The number of rounds (how many do we
need?)

16

Randomized algorithms

 Very common in computer science

– In this case, we avoid testing an infinite set of
possible lines, or all O(n2) lines generated by
pairs of points

 These algorithms find the right answer
with some probability

 Often work very well in practice

17

Questions?

18

Very similar idea

 Given two images with a set of feature matches, how do we
compute an affine transform between the two images?

19

Multi-variable fitting

 Let’s consider 2D affine transformations

– maps a 2D point to another 2D point

 We have a set of n matches
 [x1 y1]  [x1’ y1’]

 [x2 y2]  [x2’ y2’]

 [x3 y3]  [x3’ y3’]

 …

 [xn yn]  [xn’ yn’]

20

 Consider just one match

 [x1 y1]  [x1’ y1’]

 ax1 + by1 + c = x1’

 dx1 + ey1 + f = y1’

 2 equations, 6 unknowns  we need at least

3 matches, but can fit n using least squares

21

Fitting an affine transformation

 This is just a bigger linear system, still
(relatively) easy to solve

 Really just two linear systems with 3
equations each (one for a,b,c, the other
for d,e,f)

 We’ll figure out how to solve this in a
minute

22

Fitting an affine transformation

Fitting an affine transformation

 In other words:
– Find 2D affine xform T that maps points in image 1 as

close as possible to their matches in image 2

23

Back to fitting

 Just like in the case of fitting a line or
computing a median, we have some bad
data (incorrect matches)

24

These outliers will cause

problems with fitting the xform

How do we fix this?

 RANSAC to the rescue!

25

Generating and testing an
xform

 From set of matches, select 3 at
random

 Fit a transformation to the
selected matches

 Count inliers

26

inlier

outlier

Transform Fitting Algorithm
(RANSAC)

1. Select three matches at random

2. Solve for the affine transformation T

3. Count the number of matches that are
inliers to T

4. If T has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best T

27

How do we solve for T
given 3 matches?

 Three matches give a linear system with
six equations:

 ax1 + by1 + c = x1’

 dx1 + ey1 + f = y1’

 ax2 + by2 + c = x2’

 dx2 + ey2 + f = y2’

 ax3 + by3 + c = x3’

 dx3 + ey3 + f = y3’

28

[x1 y1]  [x1’ y1’]

[x2 y2]  [x2’ y2’]

[x3 y3]  [x3’ y3’]

Two 3x3 linear systems

 ax1 + by1 + c = x1’

 ax2 + by2 + c = x2’

 ax3 + by3 + c = x3’

 dx1 + ey1 + f = y1’

 dx2 + ey2 + f = y2’

 dx3 + ey3 + f = y3’

29

Solving a 3x3 system

 ax1 + by1 + c = x1’

 ax2 + by2 + c = x2’

 ax3 + by3 + c = x3’

 We can write this in matrix form:

 Now what?

30

Finding the object boundary

31

Questions?

32

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

33

sift

How do we do this part?

SIFT Features

 Scale-Invariant Feature Transform

Properties of SIFT

 Extraordinarily robust matching technique

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Do these two images overlap?

NASA Mars Rover images

NASA Mars Rover images

Answer below

