Fitting image transformations

Administrivia

A4 due tomorrow, A5 up next

Next couple weeks

How do we detect an object in an image?

 Combines ideas from image transformations, least squares, and robustness

3

Object matching in three steps

1. Detect features in the template and search images

Match features: find "similar-looking" features in the two images

We started talking about this part last time

Find a transformation T that explains the movement of the matched features

Affine transformations

A 2D affine transformation has the form:

$$T = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

6

Fitting affine transformations

- We will fit an affine transformation to a set of feature matches
 - Problem: there are many incorrect matches

Linear regression

Q

Testing goodness

 Idea: count the number of points that are "close" to the line

Cornell University

11

Testing goodness

How can we tell if a point agrees with a line?

Cornell University

12

Testing goodness

- If the distance is small, we call this point an inlier to the line
- If the distance is large, it's an outlier to the line
- For an inlier point and a good line, this distance will be close to (but not exactly) zero
- For an outlier point or bad line, this distance will probably be large
- Objective function: find the line with the most inliers (or the fewest outliers)

Optimizing for inlier count

How do we find the best possible line?

Algorithm (RANSAC)

- 1. Select two points at random
- 2. Solve for the line between those point
- 3. Count the number of inliers to the line *L*
- 4. If *L* has the highest number of inliers so far, save it
- 5. Repeat for N rounds, return the best L

Testing goodness

- This algorithm is called RANSAC (RANdom SAmple Consensus) – example of a randomized algorithm
- Used in an amazing number of computer vision algorithms
- Requires two parameters:
 - The agreement threshold (how close does an inlier have to be?)
 - The number of rounds (how many do we need?)

11

Randomized algorithms

- Very common in computer science
 - In this case, we avoid testing an infinite set of possible lines, or all O(n²) lines generated by pairs of points
- These algorithms find the right answer with some probability
- Often work very well in practice

Very similar idea

• Given two images with a set of feature matches, how do we compute an affine transform between the two images?

Multi-variable fitting

- Let's consider 2D affine transformations
 - maps a 2D point to another 2D point

$$T = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

We have a set of n matches

$$\begin{bmatrix} x_1 & y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_1' & y_1' \end{bmatrix}$$

$$\begin{bmatrix} x_2 & y_2 \end{bmatrix} \rightarrow \begin{bmatrix} x_2' & y_2' \end{bmatrix}$$

$$\begin{bmatrix} x_3 & y_3 \end{bmatrix} \rightarrow \begin{bmatrix} x_3' & y_3' \end{bmatrix}$$
...
$$[x_n & y_n] \rightarrow \begin{bmatrix} x_n' & y_n' \end{bmatrix}$$

20

Fitting an affine transformation

Consider just one match

$$[x_1 y_1] \rightarrow [x_1' y_1']$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix}$$

$$ax_1 + by_1 + c = x_1'$$

 $dx_1 + ey_1 + f = y_1'$

2 equations, 6 unknowns → we need at least
 3 matches, but can fit n using least squares

Fitting an affine transformation

- This is just a bigger linear system, still (relatively) easy to solve
- Really just two linear systems with 3 equations each (one for a,b,c, the other for d,e,f)
- We'll figure out how to solve this in a minute

2.

Fitting an affine transformation

- In other words:
 - Find 2D affine xform T that maps points in image 1 as close as possible to their matches in image 2

Back to fitting

 Just like in the case of fitting a line or computing a median, we have some bad data (incorrect matches)

How do we fix this?

RANSAC to the rescue!

Generating and testing an xform

26

Transform Fitting Algorithm (RANSAC)

- 1. Select three matches at random
- Solve for the affine transformation T
- 3. Count the number of matches that are inliers to *T*
- 4. If *T* has the highest number of inliers so far, save it
- 5. Repeat for N rounds, return the best T

How do we solve for T given 3 matches?

 Three matches give a linear system with six equations:

$$[x_{1} y_{1}] \rightarrow [x_{1}' y_{1}'] \qquad \begin{array}{c} ax_{1} + by_{1} + c = x_{1}' \\ dx_{1} + ey_{1} + f = y_{1}' \end{array}$$

$$[x_{2} y_{2}] \rightarrow [x_{2}' y_{2}'] \qquad \begin{array}{c} ax_{2} + by_{2} + c = x_{2}' \\ dx_{2} + ey_{2} + f = y_{2}' \end{array}$$

$$[x_{3} y_{3}] \rightarrow [x_{3}' y_{3}'] \qquad \begin{array}{c} ax_{3} + by_{3} + c = x_{3}' \\ dx_{3} + ey_{3} + f = y_{3}' \end{array}$$

28

Two 3x3 linear systems

$$ax_1 + by_1 + c = x_1'$$

 $ax_2 + by_2 + c = x_2'$
 $ax_3 + by_3 + c = x_3'$
 $dx_1 + ey_1 + f = y_1'$
 $dx_2 + ey_2 + f = y_2'$
 $dx_3 + ey_3 + f = y_3'$

Solving a 3x3 system

$$ax_1 + by_1 + c = x_1'$$

 $ax_2 + by_2 + c = x_2'$
 $ax_3 + by_3 + c = x_3'$

We can write this in matrix form:

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} x'_1 \\ x'_2 \\ x'_3 \end{bmatrix}$$

Now what?

30

Finding the object boundary

Object matching in three steps

 Detect features in the template and search images

Match features: find "similar-looking" features in the two images

How do we do this part?

 $T \Rightarrow$

3. Find a transformation *T* that explains the movement of the matched features

SIFT Features

• Scale-Invariant Feature Transform

Properties of SIFT

- Extraordinarily robust matching technique
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Do these two images overlap?

NASA Mars Rover images

Answer below

NASA Mars Rover images

