

Fitting image transformations

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 A4 due tomorrow, A5 up next

2

http://www.cs.cornell.edu/courses/cs1114
http://www.cs.cornell.edu/courses/cs1114

Next couple weeks

 How do we detect an object in an image?

 Combines ideas from image
transformations, least squares, and
robustness

3

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

5

sift

We started talking about this part last time

Affine transformations

 A 2D affine transformation has the form:

6

Fitting affine transformations

 We will fit an affine transformation to a set
of feature matches

– Problem: there are many incorrect matches

7

Linear regression

8

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

11

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Testing goodness

 How can we tell if a point agrees with a line?

 Compute the distance the point and the line, and
threshold

12

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 If the distance is small, we call this point an inlier
to the line

 If the distance is large, it’s an outlier to the line

 For an inlier point and a good line, this distance
will be close to (but not exactly) zero

 For an outlier point or bad line, this distance will
probably be large

 Objective function: find the line with the
most inliers (or the fewest outliers)

13

Optimizing for inlier count

 How do we find the best possible line?

14

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Algorithm (RANSAC)

1. Select two points at random

2. Solve for the line between those point

3. Count the number of inliers to the line L

4. If L has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best L

15

Testing goodness

 This algorithm is called RANSAC (RANdom
SAmple Consensus) – example of a
randomized algorithm

 Used in an amazing number of computer
vision algorithms

 Requires two parameters:

– The agreement threshold (how close does an
inlier have to be?)

– The number of rounds (how many do we
need?)

16

Randomized algorithms

 Very common in computer science

– In this case, we avoid testing an infinite set of
possible lines, or all O(n2) lines generated by
pairs of points

 These algorithms find the right answer
with some probability

 Often work very well in practice

17

Questions?

18

Very similar idea

 Given two images with a set of feature matches, how do we
compute an affine transform between the two images?

19

Multi-variable fitting

 Let’s consider 2D affine transformations

– maps a 2D point to another 2D point

 We have a set of n matches
 [x1 y1] [x1’ y1’]

 [x2 y2] [x2’ y2’]

 [x3 y3] [x3’ y3’]

 …

 [xn yn] [xn’ yn’]

20

 Consider just one match

 [x1 y1] [x1’ y1’]

 ax1 + by1 + c = x1’

 dx1 + ey1 + f = y1’

 2 equations, 6 unknowns we need at least

3 matches, but can fit n using least squares

21

Fitting an affine transformation

 This is just a bigger linear system, still
(relatively) easy to solve

 Really just two linear systems with 3
equations each (one for a,b,c, the other
for d,e,f)

 We’ll figure out how to solve this in a
minute

22

Fitting an affine transformation

Fitting an affine transformation

 In other words:
– Find 2D affine xform T that maps points in image 1 as

close as possible to their matches in image 2

23

Back to fitting

 Just like in the case of fitting a line or
computing a median, we have some bad
data (incorrect matches)

24

These outliers will cause

problems with fitting the xform

How do we fix this?

 RANSAC to the rescue!

25

Generating and testing an
xform

 From set of matches, select 3 at
random

 Fit a transformation to the
selected matches

 Count inliers

26

inlier

outlier

Transform Fitting Algorithm
(RANSAC)

1. Select three matches at random

2. Solve for the affine transformation T

3. Count the number of matches that are
inliers to T

4. If T has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best T

27

How do we solve for T
given 3 matches?

 Three matches give a linear system with
six equations:

 ax1 + by1 + c = x1’

 dx1 + ey1 + f = y1’

 ax2 + by2 + c = x2’

 dx2 + ey2 + f = y2’

 ax3 + by3 + c = x3’

 dx3 + ey3 + f = y3’

28

[x1 y1] [x1’ y1’]

[x2 y2] [x2’ y2’]

[x3 y3] [x3’ y3’]

Two 3x3 linear systems

 ax1 + by1 + c = x1’

 ax2 + by2 + c = x2’

 ax3 + by3 + c = x3’

 dx1 + ey1 + f = y1’

 dx2 + ey2 + f = y2’

 dx3 + ey3 + f = y3’

29

Solving a 3x3 system

 ax1 + by1 + c = x1’

 ax2 + by2 + c = x2’

 ax3 + by3 + c = x3’

 We can write this in matrix form:

 Now what?

30

Finding the object boundary

31

Questions?

32

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

33

sift

How do we do this part?

SIFT Features

 Scale-Invariant Feature Transform

Properties of SIFT

 Extraordinarily robust matching technique

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Do these two images overlap?

NASA Mars Rover images

NASA Mars Rover images

Answer below

