

Robust fitting

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 A4 due on Friday (please sign up for demo
slots)

 A5 will be out soon

 Prelim 2 is coming up, Tuesday, 4/10

2

http://www.cs.cornell.edu/courses/cs1114

Roadmap

 What’s left (next 6.5 weeks):

– 2 assignments (A5, A6)

– 1 final project

– 3 quizzes

– 2 prelims

3

Tricks with convex hull

 What else can we do with convex hull?

 Answer: sort!

 Given a list of numbers (x1, x2, … xn), create a list
of 2D points:

 (x1, x1
2), (x2, x2

2), … (xn, xn
2)

 Find the convex hull of these points – the points
will be in sorted order

 What does this tell us about the running time of
convex hull?

4

Tricks with convex hull

 This is called a reduction from sorting to
convex hull

5

Next couple weeks

 How do we detect an object in an image?

 Combines ideas from image
transformations, least squares, and
robustness

6

Invariant local features

 Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale

– photometric invariance: brightness, exposure, …

Feature Descriptors

(Slides courtesy Steve Seitz)

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

8

sift

Image transformations

9

2D Linear Transformations

 Can be represented with a 2D matrix

 And applied to a point using matrix
multiplication

10

Image transformations

 Rotation is around the point (0, 0) – the
upper-left corner of the image

11

 This isn’t really what we want…

Translation

 We really want to rotate around the center
of the image

 Approach: move the center of the image
to the origin, rotate, then the center back

 (Moving an image is called “translation”)

 But translation isn’t linear…

12

Homogeneous coordinates

 Add a 1 to the end of our 2D points

 (x, y)  (x, y, 1)

 “Homogeneous” 2D points

 We can represent transformations on 2D
homogeneous coordinates as 3D matrices

13

Translation

14

 Other transformations just add an extra
row and column with [0 0 1]

scale rotation

Correct rotation

 Translate center to origin

 Rotate

 Translate back to center

15

Affine transformations

 A 2D affine transformation has the form:

 Can be thought of as a 2x2 linear
transformation plus translation

 This will come up again soon in object
detection…

16

Fitting affine transformations

 We will fit an affine transformation to a set
of feature matches

– Problem: there are many incorrect matches

17

Back to fitting

 Simple case: fitting a line

18

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Linear regression

 But what happens here?

19

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

How do we fix this?

20

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

This objective

function

measures the

“goodness” of a

hypothesized line

Beyond least squares

 We need to change our objective function

 Needs to be robust to outliers

21

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Beyond least squares

 Idea: count the number of points that are
“close” to the line

22

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

23

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

24

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 2

Testing goodness

 Idea: count the number of points that are
“close” to the line

25

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

26

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 3

Testing goodness

 Idea: count the number of points that are
“close” to the line

27

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

28

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Testing goodness

 How can we tell if a point agrees with a line?

 Compute the distance the point and the line, and
threshold

29

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 If the distance is small, we call this point an inlier
to the line

 If the distance is large, it’s an outlier to the line

 For an inlier point and a good line, this distance
will be close to (but not exactly) zero

 For an outlier point or bad line, this distance will
probably be large

 Objective function: find the line with the
most inliers (or the fewest outliers)

30

Optimizing for inlier count

 How do we find the best possible line?

31

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Algorithm (RANSAC)

1. Select two points at random

2. Solve for the line between those point

3. Count the number of inliers to the line L

4. If L has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best L

32

Testing goodness

 This algorithm is called RANSAC (RANdom
SAmple Consensus) – example of a
randomized algorithm

 Used in an amazing number of computer
vision algorithms

 Requires two parameters:

– The agreement threshold (how close does an
inlier have to be?)

– The number of rounds (how many do we
need?)

33

Questions?

34

Next time

35

