

Robust fitting

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 A4 due on Friday (please sign up for demo
slots)

 A5 will be out soon

 Prelim 2 is coming up, Tuesday, 4/10

2

http://www.cs.cornell.edu/courses/cs1114

Roadmap

 What’s left (next 6.5 weeks):

– 2 assignments (A5, A6)

– 1 final project

– 3 quizzes

– 2 prelims

3

Tricks with convex hull

 What else can we do with convex hull?

 Answer: sort!

 Given a list of numbers (x1, x2, … xn), create a list
of 2D points:

 (x1, x1
2), (x2, x2

2), … (xn, xn
2)

 Find the convex hull of these points – the points
will be in sorted order

 What does this tell us about the running time of
convex hull?

4

Tricks with convex hull

 This is called a reduction from sorting to
convex hull

5

Next couple weeks

 How do we detect an object in an image?

 Combines ideas from image
transformations, least squares, and
robustness

6

Invariant local features

 Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale

– photometric invariance: brightness, exposure, …

Feature Descriptors

(Slides courtesy Steve Seitz)

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that

explains the movement of
the matched features

8

sift

Image transformations

9

2D Linear Transformations

 Can be represented with a 2D matrix

 And applied to a point using matrix
multiplication

10

Image transformations

 Rotation is around the point (0, 0) – the
upper-left corner of the image

11

 This isn’t really what we want…

Translation

 We really want to rotate around the center
of the image

 Approach: move the center of the image
to the origin, rotate, then the center back

 (Moving an image is called “translation”)

 But translation isn’t linear…

12

Homogeneous coordinates

 Add a 1 to the end of our 2D points

 (x, y) (x, y, 1)

 “Homogeneous” 2D points

 We can represent transformations on 2D
homogeneous coordinates as 3D matrices

13

Translation

14

 Other transformations just add an extra
row and column with [0 0 1]

scale rotation

Correct rotation

 Translate center to origin

 Rotate

 Translate back to center

15

Affine transformations

 A 2D affine transformation has the form:

 Can be thought of as a 2x2 linear
transformation plus translation

 This will come up again soon in object
detection…

16

Fitting affine transformations

 We will fit an affine transformation to a set
of feature matches

– Problem: there are many incorrect matches

17

Back to fitting

 Simple case: fitting a line

18

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Linear regression

 But what happens here?

19

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

How do we fix this?

20

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

This objective

function

measures the

“goodness” of a

hypothesized line

Beyond least squares

 We need to change our objective function

 Needs to be robust to outliers

21

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Beyond least squares

 Idea: count the number of points that are
“close” to the line

22

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

23

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

24

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 2

Testing goodness

 Idea: count the number of points that are
“close” to the line

25

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

26

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 3

Testing goodness

 Idea: count the number of points that are
“close” to the line

27

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 Idea: count the number of points that are
“close” to the line

28

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Testing goodness

 How can we tell if a point agrees with a line?

 Compute the distance the point and the line, and
threshold

29

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Testing goodness

 If the distance is small, we call this point an inlier
to the line

 If the distance is large, it’s an outlier to the line

 For an inlier point and a good line, this distance
will be close to (but not exactly) zero

 For an outlier point or bad line, this distance will
probably be large

 Objective function: find the line with the
most inliers (or the fewest outliers)

30

Optimizing for inlier count

 How do we find the best possible line?

31

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Score = 7

Algorithm (RANSAC)

1. Select two points at random

2. Solve for the line between those point

3. Count the number of inliers to the line L

4. If L has the highest number of inliers so
far, save it

5. Repeat for N rounds, return the best L

32

Testing goodness

 This algorithm is called RANSAC (RANdom
SAmple Consensus) – example of a
randomized algorithm

 Used in an amazing number of computer
vision algorithms

 Requires two parameters:

– The agreement threshold (how close does an
inlier have to be?)

– The number of rounds (how many do we
need?)

33

Questions?

34

Next time

35

