Robust fitting

Prof. Noah Snavely
CS1114

http://www.cs.cornell.edu/courses/cs1114

Cornell University
Computer Science

Administrivia

= A4 due on Friday (please sign up for demo
slots)

= A5 will be out soon

= Prelim 2 is coming up, Tuesday, 4/10

%m%;% Cornell University

http://www.cs.cornell.edu/courses/cs1114

Roadmap
= What's left (next 6.5 weeks):

- 2 assignments (A5, A6)
- 1 final project

- 3 quizzes

- 2 prelims

{é@ﬂ% Cornell University

Tricks with convex hull

= What else can we do with convex hull?
= Answer: sort!

= Given a list of numbers (x;, X5, ... X,), create a list
of 2D points:

(Xll Xlz)l (XZI X22)I (an an)

= Find the convex hull of these points - the points
will be in sorted order

= What does this tell us about the running time of
convex hull?

%m%;% Cornell University

Tricks with convex hull

= This is called a reduction from sorting to
convex hull

{é@ﬂ% Cornell University

Next couple weeks

= How do we detect an object in an image?

= Combines ideas from image
transformations, least squares, and
robustness

%@Cm%;% Cornell University

Invariant local features

= Find features that are invariant to transformations
- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

(. \

whdd

(Slides courtesy Steve Seitz)

f'“'%% Feature Descriptors
@ Cornell University .

Object matching in three steps

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation T that
explains the movement of
the matched features

%@Cm%;% Cornell University

Image transformations

.' %"Ej; B Cornell University

2D Linear Transformations
= Can be represented with a 2D matrix
a b
T =
= And applied to a point using matrix
multiplication

)= le]

(&) Cornell University

Image transformations

= Rotation is around the point (0, 0) - the
upper-left corner of the image

= This isn't really what we want...

é@j@ Cornell University
e

Translation

We really want to rotate around the center
of the image

Approach: move the center of the image
to the origin, rotate, then the center back

(Moving an image is called “translation”)

But translation isn’t linear...

é‘t‘é@? Cornell University
e

Homogeneous coordinates

= Add a 1 to the end of our 2D points
(x,y) > (x, ¥, 1)

= "Homogeneous” 2D points

= We can represent transformations on 2D
homogeneous coordinates as 3D matrices

%ﬂ% Cornell University

Translation
1 0 s
T=10 1 t
0O 0 1

= Other transformations just add an extra
row and column with[0 0 1]

s 0 0 cosf) —sinf 0
S=10 s 0 R=| sinff cosfl 0
0O 0 1 0 0 1
scale rotation
%@Cm%;% Cornell University

Correct rotation

= Translate center to origin

= Rotate .
o] ToRTY
0 0 1

= Translate back to center
1 0 w/2

Th=10 1 h/2

00 1

ﬁﬂ?’% Cornell Universit
E’Qg%’ ornell University

Affine transformations

= A 2D affine transformation has the form:

a b ¢
T'=1|d e f
0 0 1

= Can be thought of as a 2x2 linear
transformation plus translation

= This will come up again soon in object
detection...

fﬂ%b% Cornell Universit;
g@ ornell University

Fitting affine transformations

= We will fit an affine transformation to a set
of feature matches
- Problem: there are many incorrect matches

%ﬂ% Cornell University

Back to fitting

= Simple case: fitting a line

%m%;% Cornell University

Linear regression

= But what happens here?

How do we fix this?

%ﬂ% Cornell University

Least squares fitting

12

10r

8.l . | This objective
function

T measures the

Al] “goodness” of a

*

hypothesized line

0

.
0 1 2 3 4 5 6
Tim

Cost(m,b) = Z lyi — (max; +b)|* <
i=1

%@Cm%;% Cornell University

Beyond least squares

= We need to change our objective function
= Needs to be robust to outliers

{é@ﬂ% Cornell University

Beyond least squares

= Idea: count the number of points that are
“close” to the line

%@Cm%;% Cornell University

Testing goodness

= Idea: count the number of points that are
“close” to the line

{é@ﬂ% Cornell University

Testing goodness

= Idea: count the number of points that are
“close” to the line

%@Cm%;% Cornell University

Testing goodness

= Idea: count the number of points that are
“close” to the line

%ﬂ% Cornell University

Testing goodness

= Idea: count the number of points that are
“close” to the line

N T T
'\.\r—\
10 |
° Score =3
S @ @
g (<]
=
4 (]
A o ©
@

%@Cm%;% Cornell University

Testing goodness

= Idea: count the number of points that are

“close” to the line /

{é@ﬂ% Cornell University

Testing goodness

= Idea: count the number of points that are

“close” to the line /

| Score=7

%@Cm%;% Cornell University

Testing goodness

= How can we tell if a point agrees with a line?

= Compute the distance the point and the line, and
threshold /

Cornell University

Testing goodness

= If the distance is small, we call this point an inlier
to the line

= If the distance is large, it's an outlier to the line

= For an inlier point and a good line, this distance
will be close to (but not exactly) zero

= For an outlier point or bad line, this distance will
probably be large

= Objective function: find the line with the
most inliers (or the fewest outliers)

%m%;% Cornell University

Optimizing for inlier count

= How do we find the best possible line?

/

| Score=7

%ﬂ% Cornell University

Algorithm (RANSAC)

Select two points at random
Solve for the line between those point
Count the number of inliers to the line L

If L has the highest humber of inliers so
far, save it

5. Repeat for N rounds, return the best L

BwN e

%@Cm%;% Cornell University

Testing goodness

= This algorithm is called RANSAC (RANdom
SAmple Consensus) — example of a
randomized algorithm

= Used in an amazing number of computer
vision algorithms

= Requires two parameters:

- The agreement threshold (how close does an
inlier have to be?)

— The number of rounds (how many do we
need?)

{é@ﬂ% Cornell University

Questions?

%@Cm%;% Cornell University

Next time

%ﬂ% Cornell University

