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Administrivia 

 

 A4 due on Friday (please sign up for demo 
slots) 

 

 A5 will be out soon 

 

 Prelim 2 is coming up, Tuesday, 4/10 
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http://www.cs.cornell.edu/courses/cs1114


Roadmap 

 What’s left (next 6.5 weeks): 

 

– 2 assignments (A5, A6) 

– 1 final project 

– 3 quizzes 

– 2 prelims 
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Tricks with convex hull 

 What else can we do with convex hull? 

 Answer: sort! 

 

 Given a list of numbers (x1, x2, … xn), create a list 
of 2D points: 

  (x1, x1
2), (x2, x2

2), … (xn, xn
2) 

 

 Find the convex hull of these points – the points 
will be in sorted order 

 What does this tell us about the running time of 
convex hull? 
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Tricks with convex hull 

 This is called a reduction from sorting to 
convex hull 
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Next couple weeks 

 How do we detect an object in an image? 

 

 

 

 

 

 

 Combines ideas from image 
transformations, least squares, and 
robustness 
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Invariant local features 

 Find features that are invariant to transformations 

– geometric invariance:  translation, rotation, scale 

– photometric invariance:  brightness, exposure, … 

Feature Descriptors 

(Slides courtesy Steve Seitz) 

Object matching in three steps 

1. Detect features in the 
template and search images 

 

 

 

2. Match features: find 
“similar-looking” features in 
the two images  

 

 

 

3. Find a transformation T that 

explains the movement of 
the matched features 
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sift 



Image transformations 
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2D Linear Transformations 

 Can be represented with a 2D matrix 

 

 

 

 And applied to a point using matrix 
multiplication 
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Image transformations 

 Rotation is around the point (0, 0) – the 
upper-left corner of the image 
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 This isn’t really what we want… 

Translation 

 We really want to rotate around the center 
of the image 

 

 Approach: move the center of the image 
to the origin, rotate, then the center back 

 

 (Moving an image is called “translation”) 

 

 But translation isn’t linear… 
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Homogeneous coordinates 

 Add a 1 to the end of our 2D points 

        (x, y)  (x, y, 1) 

 

 “Homogeneous” 2D points 

 

 We can represent transformations on 2D 
homogeneous coordinates as 3D matrices 
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Translation 
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 Other transformations just add an extra 
row and column with [ 0 0 1 ] 

scale rotation 



Correct rotation 

 Translate center to origin 

 

 

 Rotate 

 

 

 Translate back to center 
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Affine transformations 

 A 2D affine transformation has the form: 

 

 

 

 

 Can be thought of as a 2x2 linear 
transformation plus translation 

 This will come up again soon in object 
detection… 
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Fitting affine transformations 

 We will fit an affine transformation to a set 
of feature matches 

– Problem: there are many incorrect matches 
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Back to fitting 

 Simple case: fitting a line 

 

 

18 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

 

 



Linear regression 

 But what happens here? 
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How do we fix this? 
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Least squares fitting 
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This objective 

function 

measures the 

“goodness” of a 

hypothesized line 



Beyond least squares 

 We need to change our objective function 

 Needs to be robust to outliers 
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Beyond least squares 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 2 



Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 3 



Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 7 



Testing goodness 

 How can we tell if a point agrees with a line? 

 Compute the distance the point and the line, and 
threshold 
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Testing goodness 

 If the distance is small, we call this point an inlier 
to the line 

 If the distance is large, it’s an outlier to the line 

 For an inlier point and a good line, this distance 
will be close to (but not exactly) zero 

 For an outlier point or bad line, this distance will 
probably be large 

 

 Objective function: find the line with the 
most inliers (or the fewest outliers) 
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Optimizing for inlier count 

 How do we find the best possible line? 
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Score = 7 

Algorithm (RANSAC) 

 

1. Select two points at random 

2. Solve for the line between those point 

3. Count the number of inliers to the line L 

4. If L has the highest number of inliers so 
far, save it 

5. Repeat for N rounds, return the best L 
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Testing goodness 

 This algorithm is called RANSAC (RANdom 
SAmple Consensus) – example of a 
randomized algorithm 
 

 Used in an amazing number of computer 
vision algorithms 
 

 Requires two parameters: 

– The agreement threshold (how close does an 
inlier have to be?) 

– The number of rounds (how many do we 
need?) 
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Questions? 

 

34 



Next time 
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