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Administrivia 

 

 A4 due on Friday (please sign up for demo 
slots) 

 

 A5 will be out soon 

 

 Prelim 2 is coming up, Tuesday, 4/10 
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Roadmap 

 What’s left (next 6.5 weeks): 

 

– 2 assignments (A5, A6) 

– 1 final project 

– 3 quizzes 

– 2 prelims 
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Tricks with convex hull 

 What else can we do with convex hull? 

 Answer: sort! 

 

 Given a list of numbers (x1, x2, … xn), create a list 
of 2D points: 

  (x1, x1
2), (x2, x2

2), … (xn, xn
2) 

 

 Find the convex hull of these points – the points 
will be in sorted order 

 What does this tell us about the running time of 
convex hull? 
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Tricks with convex hull 

 This is called a reduction from sorting to 
convex hull 
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Next couple weeks 

 How do we detect an object in an image? 

 

 

 

 

 

 

 Combines ideas from image 
transformations, least squares, and 
robustness 
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Invariant local features 

 Find features that are invariant to transformations 

– geometric invariance:  translation, rotation, scale 

– photometric invariance:  brightness, exposure, … 

Feature Descriptors 

(Slides courtesy Steve Seitz) 

Object matching in three steps 

1. Detect features in the 
template and search images 

 

 

 

2. Match features: find 
“similar-looking” features in 
the two images  

 

 

 

3. Find a transformation T that 

explains the movement of 
the matched features 
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sift 



Image transformations 
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2D Linear Transformations 

 Can be represented with a 2D matrix 

 

 

 

 And applied to a point using matrix 
multiplication 
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Image transformations 

 Rotation is around the point (0, 0) – the 
upper-left corner of the image 
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 This isn’t really what we want… 

Translation 

 We really want to rotate around the center 
of the image 

 

 Approach: move the center of the image 
to the origin, rotate, then the center back 

 

 (Moving an image is called “translation”) 

 

 But translation isn’t linear… 
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Homogeneous coordinates 

 Add a 1 to the end of our 2D points 

        (x, y)  (x, y, 1) 

 

 “Homogeneous” 2D points 

 

 We can represent transformations on 2D 
homogeneous coordinates as 3D matrices 
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Translation 
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 Other transformations just add an extra 
row and column with [ 0 0 1 ] 

scale rotation 



Correct rotation 

 Translate center to origin 

 

 

 Rotate 

 

 

 Translate back to center 
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Affine transformations 

 A 2D affine transformation has the form: 

 

 

 

 

 Can be thought of as a 2x2 linear 
transformation plus translation 

 This will come up again soon in object 
detection… 
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Fitting affine transformations 

 We will fit an affine transformation to a set 
of feature matches 

– Problem: there are many incorrect matches 
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Back to fitting 

 Simple case: fitting a line 
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Linear regression 

 But what happens here? 
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How do we fix this? 
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Least squares fitting 
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This objective 

function 

measures the 

“goodness” of a 

hypothesized line 



Beyond least squares 

 We need to change our objective function 

 Needs to be robust to outliers 
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Beyond least squares 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 2 



Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 3 



Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Testing goodness 

 Idea: count the number of points that are 
“close” to the line 
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Score = 7 



Testing goodness 

 How can we tell if a point agrees with a line? 

 Compute the distance the point and the line, and 
threshold 
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Testing goodness 

 If the distance is small, we call this point an inlier 
to the line 

 If the distance is large, it’s an outlier to the line 

 For an inlier point and a good line, this distance 
will be close to (but not exactly) zero 

 For an outlier point or bad line, this distance will 
probably be large 

 

 Objective function: find the line with the 
most inliers (or the fewest outliers) 
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Optimizing for inlier count 

 How do we find the best possible line? 
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Score = 7 

Algorithm (RANSAC) 

 

1. Select two points at random 

2. Solve for the line between those point 

3. Count the number of inliers to the line L 

4. If L has the highest number of inliers so 
far, save it 

5. Repeat for N rounds, return the best L 
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Testing goodness 

 This algorithm is called RANSAC (RANdom 
SAmple Consensus) – example of a 
randomized algorithm 
 

 Used in an amazing number of computer 
vision algorithms 
 

 Requires two parameters: 

– The agreement threshold (how close does an 
inlier have to be?) 

– The number of rounds (how many do we 
need?) 
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Questions? 

 

34 



Next time 
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