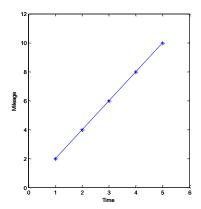
Least squares

CS1114 http://cs1114.cs.cornell.edu

Robot speedometer

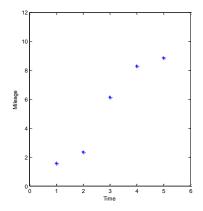
- Suppose that our robot can occasionally report how far it has traveled (mileage)
 - How can we tell how fast it is going?
- This would be a really easy problem if:
 - The robot never lied
 - I.e., it's mileage is always exactly correct
 - The robot travels at the same speed
- Unfortunately, the real world is full of lying, accelerating robots
 - We're going to figure out how to handle them

The ideal robot



3

The real (lying) robot



Speedometer approach

- We are (as usual) going to solve a very general version of this problem
 - And explore some cool algorithms
 - Many of which you will need in future classes
- The velocity of the robot at a given time is the change in mileage w.r.t. time
 - For our ideal robot, this is the slope of the line
 The line fits all our data exactly
- In general, if we know mileage as a function of time, velocity is the derivative
 - The velocity at any point in time is the slope of the mileage function

E.

Estimating velocity

- So all we need is the mileage function
- We have as input some measurements
 - Mileage, at certain times
- A mileage function takes as input something we have no control over
 - Input (time): independent variable
 - Output (mileage): dependent variable

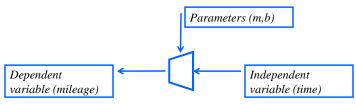
Basic strategy

- Based on the data, find mileage function
 - From this, we can compute:
 - Velocity (1st derivative)
 - Acceleration (2nd derivative)
- For a while, we will only think about mileage functions which are lines
- In other words, we assume lying, nonaccelerating robots
 - Lying, accelerating robots are much harder

7

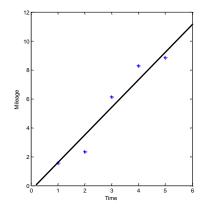
Models and parameters

- A model predicts a dependent variable from an independent variable
 - So, a mileage function is actually a model
 - A model also has some internal variables that are usually called parameters $\boldsymbol{\theta}$
 - In our line example, parameters are m,b



Linear regression

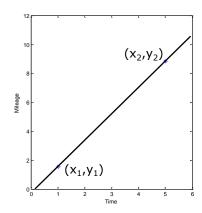
Simplest case: fitting a line



q

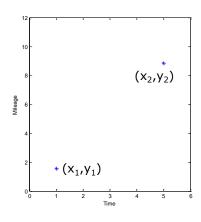
Linear regression

Simplest case: just 2 points



Linear regression

Simplest case: just 2 points



Want to find a line

$$y = mx + b$$

- $x_1 \rightarrow y_1, x_2 \rightarrow y_2$
- This forms a linear system:

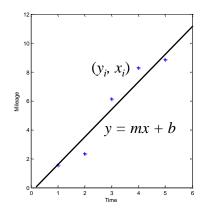
$$y_1 = mx_1 + b$$

$$y_2 = mx_2 + b$$

- x's, y's are knowns
- m, b are unknown
- Very easy to solve

1:

Linear regression, > 2 points



The line won't necessarily pass through any data point

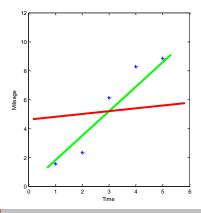
Some new definitions

- No line is perfect we can only find the best line out of all the imperfect ones
- We'll define an objective function
 Cost(m,b) that measures how far a line is
 from the data, then find the best line
 - I.e., the (m,b) that minimizes Cost(m,b)

11

Line goodness

- What makes a line good versus bad?
 - This is actually a very subtle question

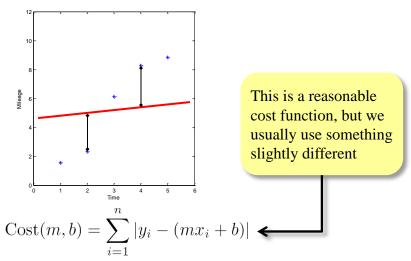


Residual errors

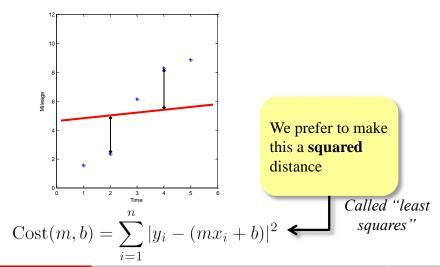
- The difference between what the model predicts and what we observe is called a residual error (i.e., a left-over)
 - Consider the data point (x,y)
 - The model m,b predicts (x,mx+b)
 - The residual is y (mx + b)
- For 1D regressions, residuals can be easily visualized
 - Vertical distance to the line

15

Least squares fitting



Least squares fitting



17

Why least squares?

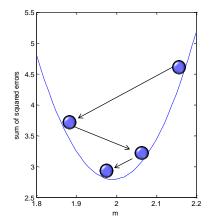
- There are lots of reasonable objective functions
- Why do we want to use least squares?
- This is a very deep question
 - We will soon point out two things that are special about least squares
 - The full story probably needs to wait for graduate-level courses, or at least next semester

Gradient descent

- Basic strategy:
 - 1. Start with some guess for the minimum
 - 2. Find the direction of steepest descent (gradient)
 - 3. Take a step in that direction (making sure that you get lower, if not, adjust the step size)
 - Repeat until taking a step doesn't get you much lower

11

Gradient descent, 1D quadratic



There is some magic in setting the step size

Some error functions are easy

- A (positive) quadratic is a convex function
 - The set of points above the curve forms a (infinite) convex set
 - The previous slide shows this in 1D
 - · But it's true in any dimension
- A sum of convex functions is convex
- Thus, the sum of squared error is convex
- Convex functions are "nice"
 - They have a single global minimum
 - Rolling downhill from anywhere gets you there

2

Consequences

- Our gradient descent method will always converge to the right answer
 - By slowly rolling downhill
 - It might take a long time, hard to predict exactly how long (see CS3220 and beyond)

- An error function where we can get stuck if we roll downhill is a hard one
 - Where we get stuck depends on where we start (i.e., initial guess/conditions)
 - An error function is hard if the area "above it" has a certain shape
 - Nooks and crannies
 - In other words, CONVEX!
 - Non-convex error functions are hard to minimize

2.

What else about LS?

- Least squares has an even more amazing property than convexity
 - Consider the linear regression problem

$$Cost(m, b) = \sum_{i=1}^{n} |y_i - (mx_i + b)|^2$$

- There is a magic formula for the optimal choice of (m,b)
 - You don't need to roll downhill, you can "simply" compute the right answer

- This is a huge part of why everyone uses least squares
- Other functions are convex, but have no closed-form solution

♦ Closed form LS formula

- The derivation requires linear algebra
 - Most books use calculus also, but it's not required (see the "Links" section on the course web page) $S_{xx} \equiv \sum_i (x_i \bar{x})^2$

$$S_{xy} \equiv \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$m = \frac{S_{xy}}{S_{xx}}$$

$$b = \bar{y} - m\bar{x}$$

 There's a closed form for any linear leastsquares problem

21

Linear least squares

- Any formula where the residual is *linear* in the variables
- Examples

linear regression: $[y - (mx + b)]^2$

Non-example:

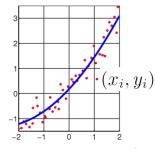
 $[x' - abc x]^2$ (variables: a, b, c)

2-

Linear least squares

- Surprisingly, fitting the coefficients of a quadratic is still linear least squares
- The residual is still linear in the coefficients

$$\beta_1$$
, β_2 , β_3



$$y = \beta_1 + \beta_2 x + \beta_3 x^2$$

$$Cost(\beta_1, \beta_2, \beta_3) = \sum_{i=1}^{n} |y_i - (\beta_1 + \beta_2 x + \beta_3 x^2)|^2$$

Wikipedia, "Least squares fitting"

Optimization

- Least squares is another example of an optimization problem
- Optimization: define a cost function and a set of possible solutions, find the one with the minimum cost
- Optimization is a huge field

20

Sorting as optimization

- Set of allowed answers: permutations of the input sequence
- Cost(permutation) = number of out-oforder pairs
- Algorithm 1: Snailsort
- Algorithm 2: Bubble sort
- Algorithm 3: ???