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Robot speedometer 

 Suppose that our robot can occasionally 
report how far it has traveled (mileage) 

– How can we tell how fast it is going? 

 This would be a really easy problem if: 

– The robot never lied 

• I.e., it’s mileage is always exactly correct 

– The robot travels at the same speed 

 Unfortunately, the real world is full of 
lying, accelerating robots 

– We’re going to figure out how to handle them 
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The ideal robot 
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The real (lying) robot 
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Speedometer approach 

 We are (as usual) going to solve a very 
general version of this problem 
– And explore some cool algorithms 

– Many of which you will need in future classes 

 The velocity of the robot at a given time is 
the change in mileage w.r.t. time 
– For our ideal robot, this is the slope of the line 

• The line fits all our data exactly 

 In general, if we know mileage as a 
function of time, velocity is the derivative 
– The velocity at any point in time is the slope of 

the mileage function 
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Estimating velocity 

 So all we need is the mileage function 

 We have as input some measurements 

– Mileage, at certain times 

 A mileage function takes as input 
something we have no control over 

– Input (time): independent variable 

– Output (mileage): dependent variable 

Independent 

variable (time) 

Dependent  

variable (mileage) 
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Basic strategy 

 Based on the data, find mileage function 

– From this, we can compute: 

• Velocity (1st derivative) 

• Acceleration (2nd derivative) 

 For a while, we will only think about 
mileage functions which are lines 

 In other words, we assume lying, non-
accelerating robots 

– Lying, accelerating robots are much harder 
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Models and parameters 

 A model predicts a dependent variable 
from an independent variable 

– So, a mileage function is actually a model 

– A model also has some internal variables that 
are usually called parameters  

– In our line example, parameters are m,b 

Independent 

variable (time) 

Dependent  

variable (mileage) 

Parameters (m,b) 



Linear regression 

 Simplest case: fitting a line 
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Linear regression 

 Simplest case: just 2 points 

10 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

 

 

(x1,y1) 

(x2,y2) 



Linear regression 

 Simplest case: just 2 points 

 Want to find a line 

      y = mx + b 

 x1  y1, x2  y2 

 This forms a linear system: 

       y1 = mx1 + b 

       y2 = mx2 + b 

 x’s, y’s are knowns 

 m, b are unknown 

 Very easy to solve 
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Linear regression, > 2 points 

 

 

 

 

 

 

 
 

 

 The line won’t necessarily pass through any data point 
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y = mx + b 

(yi, xi) 
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Some new definitions 

 

 No line is perfect – we can only find the 
best line out of all the imperfect ones 

 

 We’ll define an objective function 
Cost(m,b) that measures how far a line is 
from the data, then find the best line 

– I.e., the (m,b) that minimizes Cost(m,b) 

14 

Line goodness 

 What makes a line good versus bad? 

– This is actually a very subtle question 
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Residual errors 

 The difference between what the model 
predicts and what we observe is called a 
residual error (i.e., a left-over) 

– Consider the data point (x,y) 

– The model m,b predicts (x,mx+b) 

– The residual is y – (mx + b) 

 

 For 1D regressions, residuals can be easily 
visualized 

– Vertical distance to the line 
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Least squares fitting 
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This is a reasonable 

cost function, but we 

usually use something 

slightly different 
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Least squares fitting 
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We prefer to make 

this a squared 

distance 

Called “least 

squares” 
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Why least squares? 

 There are lots of reasonable objective 
functions 

 Why do we want to use least squares? 

 This is a very deep question 

– We will soon point out two things that are 
special about least squares 

– The full story probably needs to wait for 
graduate-level courses, or at least next 
semester 
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Gradient descent 

 

 Basic strategy: 

1. Start with some guess for the minimum 

2. Find the direction of steepest descent (gradient) 

3. Take a step in that direction (making sure that 
you get lower, if not, adjust the step size) 

4. Repeat until taking a step doesn’t get you much 
lower 

Gradient descent, 1D quadratic 

 There is some magic in setting the step size 
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Some error functions are easy 

 A (positive) quadratic is a convex 
function 

– The set of points above the curve forms a 
(infinite) convex set 

– The previous slide shows this in 1D 

• But it’s true in any dimension 

 A sum of convex functions is convex 

 Thus, the sum of squared error is 
convex 

 Convex functions are “nice” 

– They have a single global minimum 

– Rolling downhill from anywhere gets you 
there 
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Consequences 

 

 Our gradient descent method will always 
converge to the right answer 

– By slowly rolling downhill 

– It might take a long time, hard to predict 
exactly how long (see CS3220 and beyond) 
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Why is an error function hard? 

 An error function where we can get stuck 
if we roll downhill is a hard one 

– Where we get stuck depends on where we 
start (i.e., initial guess/conditions) 

– An error function is hard if the area “above it” 
has a certain shape 

• Nooks and crannies 

• In other words, CONVEX! 

– Non-convex error functions are hard to 
minimize 
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What else about LS? 

 Least squares has an even more amazing 
property than convexity 

– Consider the linear regression problem 

 

 

 

 There is a magic formula for the optimal 
choice of (m,b) 

– You don’t need to roll downhill, you can 
“simply” compute the right answer 



25 

Closed-form solution! 

 

 This is a huge part of why everyone uses 
least squares 

 Other functions are convex, but have no 
closed-form solution 
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 Closed form LS formula 

 The derivation requires linear algebra 

– Most books use calculus also, but it’s not 
required (see the “Links” section on the course 
web page) 

 

 

 

 

 

– There’s a closed form for any linear least-
squares problem 



Linear least squares 

 Any formula where the residual is linear in 
the variables 

 

 Examples 

 linear regression: [y – (mx + b)]2 

 

 Non-example: 

     [x’ – abc x]2   (variables: a, b, c) 
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Linear least squares 

 Surprisingly, fitting the 
coefficients of a 
quadratic is still linear 
least squares 

 

 The residual is still 
linear in the coefficients  

           β1, β2, β3 
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Wikipedia, “Least squares fitting” 



Optimization 

 Least squares is another example of an 
optimization problem 

 

 Optimization: define a cost function and a 
set of possible solutions, find the one with 
the minimum cost 

 

 Optimization is a huge field 
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Sorting as optimization 

 

 Set of allowed answers: permutations of 
the input sequence 

 Cost(permutation) = number of out-of-
order pairs 

 

 Algorithm 1: Snailsort 

 Algorithm 2: Bubble sort  

 Algorithm 3: ??? 
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