#### **Least squares**



CS1114 http://cs1114.cs.cornell.edu



#### **Robot speedometer**

- Suppose that our robot can occasionally report how far it has traveled (mileage)
  - How can we tell how fast it is going?
- This would be a really easy problem if:
  - The robot never lied
    - I.e., it's mileage is always exactly correct
  - The robot travels at the same speed
- Unfortunately, the real world is full of lying, accelerating robots
  - We're going to figure out how to handle them

# The ideal robot





3

# The real (lying) robot



#### **Speedometer approach**

- We are (as usual) going to solve a very general version of this problem
  - And explore some cool algorithms
  - Many of which you will need in future classes
- The velocity of the robot at a given time is the change in mileage w.r.t. time
  - For our ideal robot, this is the slope of the line
    The line fits all our data exactly
- In general, if we know mileage as a function of time, velocity is the derivative
  - The velocity at any point in time is the slope of the mileage function



E.

### **Estimating velocity**

- So all we need is the mileage function
- We have as input some measurements
  - Mileage, at certain times
- A mileage function takes as input something we have no control over
  - Input (time): independent variable
  - Output (mileage): dependent variable





#### **Basic strategy**

- Based on the data, find mileage function
  - From this, we can compute:
    - Velocity (1st derivative)
    - Acceleration (2<sup>nd</sup> derivative)
- For a while, we will only think about mileage functions which are lines
- In other words, we assume lying, nonaccelerating robots
  - Lying, accelerating robots are much harder



7

### **Models and parameters**

- A model predicts a dependent variable from an independent variable
  - So, a mileage function is actually a model
  - A model also has some internal variables that are usually called parameters  $\boldsymbol{\theta}$
  - In our line example, parameters are m,b



# **Linear regression**

Simplest case: fitting a line





q

# **Linear regression**

Simplest case: just 2 points



# **Linear regression**

Simplest case: just 2 points



Want to find a line

$$y = mx + b$$

- $x_1 \rightarrow y_1, x_2 \rightarrow y_2$
- This forms a linear system:

$$y_1 = mx_1 + b$$

$$y_2 = mx_2 + b$$

- x's, y's are knowns
- m, b are unknown
- Very easy to solve



1:

# **Linear regression, > 2 points**



The line won't necessarily pass through any data point

#### Some new definitions

- No line is perfect we can only find the best line out of all the imperfect ones
- We'll define an objective function
   Cost(m,b) that measures how far a line is
   from the data, then find the best line
   - I.e., the (m,b) that minimizes Cost(m,b)



11

### **Line goodness**

- What makes a line good versus bad?
  - This is actually a very subtle question



#### **Residual errors**

- The difference between what the model predicts and what we observe is called a residual error (i.e., a left-over)
  - Consider the data point (x,y)
  - The model m,b predicts (x,mx+b)
  - The residual is y (mx + b)
- For 1D regressions, residuals can be easily visualized
  - Vertical distance to the line



15

### **Least squares fitting**



#### **Least squares fitting**





17

## Why least squares?

- There are lots of reasonable objective functions
- Why do we want to use least squares?
- This is a very deep question
  - We will soon point out two things that are special about least squares
  - The full story probably needs to wait for graduate-level courses, or at least next semester

#### **Gradient descent**

- Basic strategy:
  - 1. Start with some guess for the minimum
  - 2. Find the direction of steepest descent (gradient)
  - 3. Take a step in that direction (making sure that you get lower, if not, adjust the step size)
  - Repeat until taking a step doesn't get you much lower



11

#### **Gradient descent, 1D quadratic**



There is some magic in setting the step size

### Some error functions are easy

- A (positive) quadratic is a convex function
  - The set of points above the curve forms a (infinite) convex set
  - The previous slide shows this in 1D
    - · But it's true in any dimension
- A sum of convex functions is convex
- Thus, the sum of squared error is convex
- Convex functions are "nice"
  - They have a single global minimum
  - Rolling downhill from anywhere gets you there



2

#### Consequences

- Our gradient descent method will always converge to the right answer
  - By slowly rolling downhill
  - It might take a long time, hard to predict exactly how long (see CS3220 and beyond)



- An error function where we can get stuck if we roll downhill is a hard one
  - Where we get stuck depends on where we start (i.e., initial guess/conditions)
  - An error function is hard if the area "above it" has a certain shape
    - Nooks and crannies
    - In other words, CONVEX!
  - Non-convex error functions are hard to minimize



2.

#### What else about LS?

- Least squares has an even more amazing property than convexity
  - Consider the linear regression problem

$$Cost(m, b) = \sum_{i=1}^{n} |y_i - (mx_i + b)|^2$$

- There is a magic formula for the optimal choice of (m,b)
  - You don't need to roll downhill, you can "simply" compute the right answer

- This is a huge part of why everyone uses least squares
- Other functions are convex, but have no closed-form solution



## **♦ Closed form LS formula**

- The derivation requires linear algebra
  - Most books use calculus also, but it's not required (see the "Links" section on the course web page)  $S_{xx} \equiv \sum_i (x_i \bar{x})^2$

$$S_{xy} \equiv \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$m = \frac{S_{xy}}{S_{xx}}$$

$$b = \bar{y} - m\bar{x}$$

 There's a closed form for any linear leastsquares problem



21

### **Linear least squares**

- Any formula where the residual is *linear* in the variables
- Examples

linear regression:  $[y - (mx + b)]^2$ 

Non-example:

 $[x' - abc x]^2$  (variables: a, b, c)



2-

### **Linear least squares**

- Surprisingly, fitting the coefficients of a quadratic is still linear least squares
- The residual is still linear in the coefficients

$$\beta_1$$
,  $\beta_2$ ,  $\beta_3$ 



$$y = \beta_1 + \beta_2 x + \beta_3 x^2$$

$$Cost(\beta_1, \beta_2, \beta_3) = \sum_{i=1}^{n} |y_i - (\beta_1 + \beta_2 x + \beta_3 x^2)|^2$$

Wikipedia, "Least squares fitting"

#### **Optimization**

- Least squares is another example of an optimization problem
- Optimization: define a cost function and a set of possible solutions, find the one with the minimum cost
- Optimization is a huge field



20

### Sorting as optimization

- Set of allowed answers: permutations of the input sequence
- Cost(permutation) = number of out-oforder pairs
- Algorithm 1: Snailsort
- Algorithm 2: Bubble sort
- Algorithm 3: ???