

Least squares

CS1114

http://cs1114.cs.cornell.edu

2

Robot speedometer

 Suppose that our robot can occasionally
report how far it has traveled (mileage)

– How can we tell how fast it is going?

 This would be a really easy problem if:

– The robot never lied

• I.e., it’s mileage is always exactly correct

– The robot travels at the same speed

 Unfortunately, the real world is full of
lying, accelerating robots

– We’re going to figure out how to handle them

3

The ideal robot

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

4

The real (lying) robot

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

5

Speedometer approach

 We are (as usual) going to solve a very
general version of this problem
– And explore some cool algorithms

– Many of which you will need in future classes

 The velocity of the robot at a given time is
the change in mileage w.r.t. time
– For our ideal robot, this is the slope of the line

• The line fits all our data exactly

 In general, if we know mileage as a
function of time, velocity is the derivative
– The velocity at any point in time is the slope of

the mileage function

6

Estimating velocity

 So all we need is the mileage function

 We have as input some measurements

– Mileage, at certain times

 A mileage function takes as input
something we have no control over

– Input (time): independent variable

– Output (mileage): dependent variable

Independent

variable (time)

Dependent

variable (mileage)

7

Basic strategy

 Based on the data, find mileage function

– From this, we can compute:

• Velocity (1st derivative)

• Acceleration (2nd derivative)

 For a while, we will only think about
mileage functions which are lines

 In other words, we assume lying, non-
accelerating robots

– Lying, accelerating robots are much harder

8

Models and parameters

 A model predicts a dependent variable
from an independent variable

– So, a mileage function is actually a model

– A model also has some internal variables that
are usually called parameters 

– In our line example, parameters are m,b

Independent

variable (time)

Dependent

variable (mileage)

Parameters (m,b)

Linear regression

 Simplest case: fitting a line

9

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Linear regression

 Simplest case: just 2 points

10

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

(x1,y1)

(x2,y2)

Linear regression

 Simplest case: just 2 points

 Want to find a line

 y = mx + b

 x1  y1, x2  y2

 This forms a linear system:

 y1 = mx1 + b

 y2 = mx2 + b

 x’s, y’s are knowns

 m, b are unknown

 Very easy to solve

11

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

(x1,y1)

(x2,y2)

Linear regression, > 2 points

 The line won’t necessarily pass through any data point

12

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

y = mx + b

(yi, xi)

13

Some new definitions

 No line is perfect – we can only find the
best line out of all the imperfect ones

 We’ll define an objective function
Cost(m,b) that measures how far a line is
from the data, then find the best line

– I.e., the (m,b) that minimizes Cost(m,b)

14

Line goodness

 What makes a line good versus bad?

– This is actually a very subtle question

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

15

Residual errors

 The difference between what the model
predicts and what we observe is called a
residual error (i.e., a left-over)

– Consider the data point (x,y)

– The model m,b predicts (x,mx+b)

– The residual is y – (mx + b)

 For 1D regressions, residuals can be easily
visualized

– Vertical distance to the line

16

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

This is a reasonable

cost function, but we

usually use something

slightly different

17

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

We prefer to make

this a squared

distance

Called “least

squares”

18

Why least squares?

 There are lots of reasonable objective
functions

 Why do we want to use least squares?

 This is a very deep question

– We will soon point out two things that are
special about least squares

– The full story probably needs to wait for
graduate-level courses, or at least next
semester

19

Gradient descent

 Basic strategy:

1. Start with some guess for the minimum

2. Find the direction of steepest descent (gradient)

3. Take a step in that direction (making sure that
you get lower, if not, adjust the step size)

4. Repeat until taking a step doesn’t get you much
lower

Gradient descent, 1D quadratic

 There is some magic in setting the step size

20

1.8 1.9 2 2.1 2.2
2.5

3

3.5

4

4.5

5

5.5

m

s
u
m

 o
f

s
q
u
a
re

d
 e

rr
o
rs

21

Some error functions are easy

 A (positive) quadratic is a convex
function

– The set of points above the curve forms a
(infinite) convex set

– The previous slide shows this in 1D

• But it’s true in any dimension

 A sum of convex functions is convex

 Thus, the sum of squared error is
convex

 Convex functions are “nice”

– They have a single global minimum

– Rolling downhill from anywhere gets you
there

22

Consequences

 Our gradient descent method will always
converge to the right answer

– By slowly rolling downhill

– It might take a long time, hard to predict
exactly how long (see CS3220 and beyond)

23

Why is an error function hard?

 An error function where we can get stuck
if we roll downhill is a hard one

– Where we get stuck depends on where we
start (i.e., initial guess/conditions)

– An error function is hard if the area “above it”
has a certain shape

• Nooks and crannies

• In other words, CONVEX!

– Non-convex error functions are hard to
minimize

24

What else about LS?

 Least squares has an even more amazing
property than convexity

– Consider the linear regression problem

 There is a magic formula for the optimal
choice of (m,b)

– You don’t need to roll downhill, you can
“simply” compute the right answer

25

Closed-form solution!

 This is a huge part of why everyone uses
least squares

 Other functions are convex, but have no
closed-form solution

26

 Closed form LS formula

 The derivation requires linear algebra

– Most books use calculus also, but it’s not
required (see the “Links” section on the course
web page)

– There’s a closed form for any linear least-
squares problem

Linear least squares

 Any formula where the residual is linear in
the variables

 Examples

 linear regression: [y – (mx + b)]2

 Non-example:

 [x’ – abc x]2 (variables: a, b, c)

27

Linear least squares

 Surprisingly, fitting the
coefficients of a
quadratic is still linear
least squares

 The residual is still
linear in the coefficients

 β1, β2, β3

28

Wikipedia, “Least squares fitting”

Optimization

 Least squares is another example of an
optimization problem

 Optimization: define a cost function and a
set of possible solutions, find the one with
the minimum cost

 Optimization is a huge field

29

Sorting as optimization

 Set of allowed answers: permutations of
the input sequence

 Cost(permutation) = number of out-of-
order pairs

 Algorithm 1: Snailsort

 Algorithm 2: Bubble sort

 Algorithm 3: ???

30

