

Least squares

CS1114

http://cs1114.cs.cornell.edu

2

Robot speedometer

 Suppose that our robot can occasionally
report how far it has traveled (mileage)

– How can we tell how fast it is going?

 This would be a really easy problem if:

– The robot never lied

• I.e., it’s mileage is always exactly correct

– The robot travels at the same speed

 Unfortunately, the real world is full of
lying, accelerating robots

– We’re going to figure out how to handle them

3

The ideal robot

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

4

The real (lying) robot

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

5

Speedometer approach

 We are (as usual) going to solve a very
general version of this problem
– And explore some cool algorithms

– Many of which you will need in future classes

 The velocity of the robot at a given time is
the change in mileage w.r.t. time
– For our ideal robot, this is the slope of the line

• The line fits all our data exactly

 In general, if we know mileage as a
function of time, velocity is the derivative
– The velocity at any point in time is the slope of

the mileage function

6

Estimating velocity

 So all we need is the mileage function

 We have as input some measurements

– Mileage, at certain times

 A mileage function takes as input
something we have no control over

– Input (time): independent variable

– Output (mileage): dependent variable

Independent

variable (time)

Dependent

variable (mileage)

7

Basic strategy

 Based on the data, find mileage function

– From this, we can compute:

• Velocity (1st derivative)

• Acceleration (2nd derivative)

 For a while, we will only think about
mileage functions which are lines

 In other words, we assume lying, non-
accelerating robots

– Lying, accelerating robots are much harder

8

Models and parameters

 A model predicts a dependent variable
from an independent variable

– So, a mileage function is actually a model

– A model also has some internal variables that
are usually called parameters

– In our line example, parameters are m,b

Independent

variable (time)

Dependent

variable (mileage)

Parameters (m,b)

Linear regression

 Simplest case: fitting a line

9

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

Linear regression

 Simplest case: just 2 points

10

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

(x1,y1)

(x2,y2)

Linear regression

 Simplest case: just 2 points

 Want to find a line

 y = mx + b

 x1 y1, x2 y2

 This forms a linear system:

 y1 = mx1 + b

 y2 = mx2 + b

 x’s, y’s are knowns

 m, b are unknown

 Very easy to solve

11

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

(x1,y1)

(x2,y2)

Linear regression, > 2 points

 The line won’t necessarily pass through any data point

12

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

y = mx + b

(yi, xi)

13

Some new definitions

 No line is perfect – we can only find the
best line out of all the imperfect ones

 We’ll define an objective function
Cost(m,b) that measures how far a line is
from the data, then find the best line

– I.e., the (m,b) that minimizes Cost(m,b)

14

Line goodness

 What makes a line good versus bad?

– This is actually a very subtle question

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

15

Residual errors

 The difference between what the model
predicts and what we observe is called a
residual error (i.e., a left-over)

– Consider the data point (x,y)

– The model m,b predicts (x,mx+b)

– The residual is y – (mx + b)

 For 1D regressions, residuals can be easily
visualized

– Vertical distance to the line

16

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

This is a reasonable

cost function, but we

usually use something

slightly different

17

Least squares fitting

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

a
g
e

We prefer to make

this a squared

distance

Called “least

squares”

18

Why least squares?

 There are lots of reasonable objective
functions

 Why do we want to use least squares?

 This is a very deep question

– We will soon point out two things that are
special about least squares

– The full story probably needs to wait for
graduate-level courses, or at least next
semester

19

Gradient descent

 Basic strategy:

1. Start with some guess for the minimum

2. Find the direction of steepest descent (gradient)

3. Take a step in that direction (making sure that
you get lower, if not, adjust the step size)

4. Repeat until taking a step doesn’t get you much
lower

Gradient descent, 1D quadratic

 There is some magic in setting the step size

20

1.8 1.9 2 2.1 2.2
2.5

3

3.5

4

4.5

5

5.5

m

s
u
m

 o
f

s
q
u
a
re

d
 e

rr
o
rs

21

Some error functions are easy

 A (positive) quadratic is a convex
function

– The set of points above the curve forms a
(infinite) convex set

– The previous slide shows this in 1D

• But it’s true in any dimension

 A sum of convex functions is convex

 Thus, the sum of squared error is
convex

 Convex functions are “nice”

– They have a single global minimum

– Rolling downhill from anywhere gets you
there

22

Consequences

 Our gradient descent method will always
converge to the right answer

– By slowly rolling downhill

– It might take a long time, hard to predict
exactly how long (see CS3220 and beyond)

23

Why is an error function hard?

 An error function where we can get stuck
if we roll downhill is a hard one

– Where we get stuck depends on where we
start (i.e., initial guess/conditions)

– An error function is hard if the area “above it”
has a certain shape

• Nooks and crannies

• In other words, CONVEX!

– Non-convex error functions are hard to
minimize

24

What else about LS?

 Least squares has an even more amazing
property than convexity

– Consider the linear regression problem

 There is a magic formula for the optimal
choice of (m,b)

– You don’t need to roll downhill, you can
“simply” compute the right answer

25

Closed-form solution!

 This is a huge part of why everyone uses
least squares

 Other functions are convex, but have no
closed-form solution

26

 Closed form LS formula

 The derivation requires linear algebra

– Most books use calculus also, but it’s not
required (see the “Links” section on the course
web page)

– There’s a closed form for any linear least-
squares problem

Linear least squares

 Any formula where the residual is linear in
the variables

 Examples

 linear regression: [y – (mx + b)]2

 Non-example:

 [x’ – abc x]2 (variables: a, b, c)

27

Linear least squares

 Surprisingly, fitting the
coefficients of a
quadratic is still linear
least squares

 The residual is still
linear in the coefficients

 β1, β2, β3

28

Wikipedia, “Least squares fitting”

Optimization

 Least squares is another example of an
optimization problem

 Optimization: define a cost function and a
set of possible solutions, find the one with
the minimum cost

 Optimization is a huge field

29

Sorting as optimization

 Set of allowed answers: permutations of
the input sequence

 Cost(permutation) = number of out-of-
order pairs

 Algorithm 1: Snailsort

 Algorithm 2: Bubble sort

 Algorithm 3: ???

30

