

Linked lists

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 Assignment 3 due next Friday, 3/9

 Prelim 1! This Thursday in class

– Topics through today (including running time,
sorting, selection, graphs, linked lists)

– Closed book / closed notes

 Review session Wednesday evening, 7pm,
Upson 111

2

3

Linked Lists -- Example

8 4 1 3

8 5 1

1 2 3

7 4 3

4 5 6

3 0 X

7 8 9

8 3 4

1 2 3

5 1 7

4 5 6

3 0 X

7 8 9

4

Inserting an element – linked lists

 Create a new cell and splice it into the list

 Splicing depends on where the cell goes:

– How do we insert:

• At the end?

• In the middle?

• At the beginning?

8 4 1 3

5
M(1)

5

Adding a header

 We can represent the linked list just by
the initial cell, but this is problematic

– Problem with inserting at the beginning

 Instead, we add a header – a few entries
that are not cells, but hold information
about the list

1. A pointer to the first element

2. A count of the number of elements

6

Linked list insertion

Initial list

Insert a 5
at end

Insert an 8
after the 1

5 2 2

1 2 3

0 1 3

4 5 6

X X X

7 8 9

X X X X

10 11 12 13

5 3 2

1 2 3

7 1 3

4 5 6

5 0 X

7 8 9

X X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X

10 11 12 13

11 5 2

1 2 3

7 1 9

4 5 6

5 0 8

7 8 9

3 6 5 X

10 11 12 13
Insert a 6

at the start

First element
starts at 5

Size of list is 2

Linked list deletion

 We can also delete cells

 Simply update the header and change one
pointers (to skip over the deleted
element)

 Deleting things is the source of many bugs
in computer programs

– You need to make sure you delete something
once, and only once

7

8

Linked list deletion

Initial list

Delete the
last cell

Delete the 8

5 3 2

1 2 3

0 1 9

4 5 6

5 0 8

7 8 9

3 X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

5 2 2 0 1 3 5 0 8 3 X X X

10 11 12 13

Delete the
first cell

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

3 1 2 0 1 3 5 0 8 3 X X X

10 11 12 13

Linked lists – running time

 We can insert an item (at the front) in
constant (O(1)) time

– Just manipulating the pointers

– As long as we know where to allocate the cell

 We can delete an element (at the front) in
constant time

9

Linked lists – running time

 What about inserting / deleting from the
end of the list?

 How can we fix this?

10

11

Doubly linked lists

8 4 1 3

3 1 4 8

12

A doubly-linked list in memory

4 7 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

4 8

First element

Last element
Size of list

13

Notes on doubly-linked lists

 Inserting and deleting at both ends is fast,
but the code is very easy to get wrong

– Try it on all cases, especially trivial ones

– Look for invariants: statements that must be
true of any valid list

– Debug your code by checking invariants

• In C/C++, this is done via assert

• Most languages have a facility like this built in

 But if not, you can just write your own!

14

Memory allocation

 So far we just assumed that the hardware
supplied us with a huge array M

– When we need more storage, we just grab
locations at the end

• Keep track of next free memory location

– What can go wrong?

• Consider repeatedly adding, deleting an item

 When we delete items from a linked list
we change pointers so that the items are
inaccessible

– But they still waste space!

15

Storage reclamation

 Someone has to figure out that certain
locations can be re-used (“garbage”)

– If this is too conservative, your program will
run slower and slower (“memory leak”)

– If it’s too aggressive, your program will crash
(“blue screen of death”)

Questions?

16

