

Linked lists

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 Assignment 3 due next Friday, 3/9

 Prelim 1! This Thursday in class

– Topics through today (including running time,
sorting, selection, graphs, linked lists)

– Closed book / closed notes

 Review session Wednesday evening, 7pm,
Upson 111

2

3

Linked Lists -- Example

8 4 1 3

8 5 1

1 2 3

7 4 3

4 5 6

3 0 X

7 8 9

8 3 4

1 2 3

5 1 7

4 5 6

3 0 X

7 8 9

4

Inserting an element – linked lists

 Create a new cell and splice it into the list

 Splicing depends on where the cell goes:

– How do we insert:

• At the end?

• In the middle?

• At the beginning?

8 4 1 3

5
M(1)

5

Adding a header

 We can represent the linked list just by
the initial cell, but this is problematic

– Problem with inserting at the beginning

 Instead, we add a header – a few entries
that are not cells, but hold information
about the list

1. A pointer to the first element

2. A count of the number of elements

6

Linked list insertion

Initial list

Insert a 5
at end

Insert an 8
after the 1

5 2 2

1 2 3

0 1 3

4 5 6

X X X

7 8 9

X X X X

10 11 12 13

5 3 2

1 2 3

7 1 3

4 5 6

5 0 X

7 8 9

X X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X

10 11 12 13

11 5 2

1 2 3

7 1 9

4 5 6

5 0 8

7 8 9

3 6 5 X

10 11 12 13
Insert a 6

at the start

First element
starts at 5

Size of list is 2

Linked list deletion

 We can also delete cells

 Simply update the header and change one
pointers (to skip over the deleted
element)

 Deleting things is the source of many bugs
in computer programs

– You need to make sure you delete something
once, and only once

7

8

Linked list deletion

Initial list

Delete the
last cell

Delete the 8

5 3 2

1 2 3

0 1 9

4 5 6

5 0 8

7 8 9

3 X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

5 2 2 0 1 3 5 0 8 3 X X X

10 11 12 13

Delete the
first cell

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X

10 11 12 13

1 2 3 4 5 6 7 8 9

3 1 2 0 1 3 5 0 8 3 X X X

10 11 12 13

Linked lists – running time

 We can insert an item (at the front) in
constant (O(1)) time

– Just manipulating the pointers

– As long as we know where to allocate the cell

 We can delete an element (at the front) in
constant time

9

Linked lists – running time

 What about inserting / deleting from the
end of the list?

 How can we fix this?

10

11

Doubly linked lists

8 4 1 3

3 1 4 8

12

A doubly-linked list in memory

4 7 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

4 8

First element

Last element
Size of list

13

Notes on doubly-linked lists

 Inserting and deleting at both ends is fast,
but the code is very easy to get wrong

– Try it on all cases, especially trivial ones

– Look for invariants: statements that must be
true of any valid list

– Debug your code by checking invariants

• In C/C++, this is done via assert

• Most languages have a facility like this built in

 But if not, you can just write your own!

14

Memory allocation

 So far we just assumed that the hardware
supplied us with a huge array M

– When we need more storage, we just grab
locations at the end

• Keep track of next free memory location

– What can go wrong?

• Consider repeatedly adding, deleting an item

 When we delete items from a linked list
we change pointers so that the items are
inaccessible

– But they still waste space!

15

Storage reclamation

 Someone has to figure out that certain
locations can be re-used (“garbage”)

– If this is too conservative, your program will
run slower and slower (“memory leak”)

– If it’s too aggressive, your program will crash
(“blue screen of death”)

Questions?

16

