Graph algorithms

Administrivia

- Assignment 2 is out
- Second part due this Friday by 5pm
- Signup slots are up
- First prelim will be next week
- Thursday, March 2, in class

What is a graph?

- Loosely speaking, a set of things that are paired up in some way
- Precisely, a set of vertices V and edges E
- Vertices sometimes called nodes
- An edge (or link) connects a pair of vertices

Images as graphs

Images as graphs

More graph problems

Hamiltonian \& Eulerian cycles

- Two questions that are useful for problems such as mailman delivery routes
- Hamiltonian cycle:
- A cycle that visits each vertex exactly once (except the start and end)
- Eulerian cycle:
- A cycle that uses each edge exactly once

Hamiltonian \& Eulerian cycles

- Is it easier to tell if a graph has a Hamiltonian or Eulerian cycle?

Travelling Salesman Problem

- For a complete, weighted graph
- Find the cycle that visits all vertices with the lowest total cost

Planarity testing

- A graph is planar if you can draw it without the edges crossing
- It's OK to move the edges or vertices around, as long as edges connect the same vertices

- Is this graph planar?

- Can you prove it?

Four-color theorem

- Any planar graph can be colored using no more than 4 colors

"Small world" phenomenon (Six degrees of separation)

- How close together are nodes in a graph (e.g., what's the average number of hops connecting pairs of nodes?)

- Milgram's small world experiment:
- Send postcard to random person A in Omaha; task is to get it to a random person B in Boston
- If A knows B, send directly
- Otherwise, A sends to someone A knows who is most likely to know B
- People are separated by 5.5 links on average

Connected components

- Even if all nodes are not connected, there will be subsets that are all connected
- Connected components

- Component 1: \{ V1, V3, V5 \}
- Component 2: \{ V2, V4 \}

Blobs are components!

Blobs are components!

A	0	0	0	0	0	0	0	B	0
0	0	0	0	0	0	0	0	C	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	D	0	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you're done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

Finding components

1. Pick a 1 to start with, where you don't know which component it is in

- When there aren't any, you're done

2. Give it a new component color
3. Assign the same component color to each pixel that is part of the same component

- Basic strategy: color any neighboring 1's, have them color their neighbors, and so on

