Blobs and Graphs

Prof. Noah Snavely CS1114

http://www.cs.cornell.edu/courses/cs1114

Administrivia

- Assignment 2
 - First part due tomorrow by 5pm
 - Second part due next Friday by 5pm

Prelims

Prelim 1: March 1, 2012 (two weeks)

Prelim 2: April 5, 2012

Prelim 3: May 3, 2012

All in class, all closed note

1

Problems, algorithms, programs

- A central distinction in CS
- Problem: what you want to compute
 - "Find the median"
 - Sometimes called a specification
- Algorithm: how to do it, in general
 - "Repeated find biggest"
 - "Quickselect"
- Program: how to do it, in a particular programming language

function [med] = find_median[A]

Cornell University

4

Back to the lightstick

• The lightstick forms a large "blob" in the thresholded image (among other blobs)

.

What is a blob?

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0

- 1. Pick a 1 to start with, where you don't know which blob it is in
 - When there aren't any, you're done
- 2. Give it a new blob color
- 3. Assign the same blob color to each pixel that is part of the same blob

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

c

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

11

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

13

- 1. Pick a 1 to start with, where you don't know which blob it is in
 - When there aren't any, you're done
- 2. Give it a new blob color
- 3. Assign the same blob color to each pixel that is part of the same blob
 - How do we figure this out?
 - You are part of the blob if you are next to someone who is part of the blob
 - But what does "next to" mean?

What is a neighbor?

- We need a notion of neighborhood
 - Sometimes called a neighborhood system
- Standard system: use vertical and horizontal neighbors
 - Called "NEWS": north, east, west, south
 - 4-connected, since you have 4 neighbors

- Another possibility includes diagonals
 - 8-connected neighborhood system

15

The long winding road to blobs

- We actually need to cover a surprising amount of material to get to blob finding
 - Some of which is not obviously relevant
 - But (trust me) it will all hang together!

A single idea can be used to think about:

- Assigning frequencies to radio stations

- Scheduling your classes so they don't conflict

Figuring out if a chemical is already known

- Finding groups in Facebook

- Ranking web search results

1

Graphs: always the answer

- We are going to look at an incredibly important concept called a graph
 - Note: not the same as a plot
- Most problems can be thought of in terms of graphs
 - But it may not be obvious, as with blobs

What is a graph?

- Loosely speaking, a set of things that are paired up in some way
- Precisely, a set of vertices V and edges E
 - Vertices sometimes called nodes
 - An edge (or link) connects a pair of vertices

V = { V1, V2, V3, V4, V5 }

 $\mathbf{E} = \{ (V1,V3), (V2,V5), (V3,V4) \}$

19

Notes on graphs

- What can a graph represent?
 - Cities and direct flights
 - People and friendships
 - Web pages and hyperlinks
 - Rooms and doorways
 - IMAGES!!!

Notes on graphs

- DTW)

 LAX ITH

 PHL

 LGA
- A graph isn't changed by:
 - Drawing the edges differently
 - While preserving endpoints
 - Renaming the vertices

21

Some major graph problems

- Graph coloring
 - Ensuring that radio stations don't clash
- Graph connectivity
 - How fragile is the internet?
- Graph cycles
 - Helping FedEx/UPS/DHL plan a route
- Planarity testing
 - Connecting computer chips on a motherboard
- Graph isomorphism
 - Is a chemical structure already known?

Graph coloring problem

- Given a graph and a set of colors {1,...,k}, assign each vertex a color
- Adjacent vertices have different colors

2:

Radio frequencies via coloring

- How can we assign frequencies to a set of radio stations so that there are no clashes?
- Make a graph where each station is a vertex
 - Put an edge between two stations that clash
 - I.e., if their signal areas overlap
 - Any coloring is a non-clashing assignment of frequencies
 - Can you prove this? What about vice-versa?

Images as graphs

21

Images as graphs

Images as graphs

27

Graphs and paths

- Can you get from vertex V to vertex W?
 - Is there a route from one city to another?
- More precisely, is there a sequence of vertices V,V₁,V₂,...,V_k,W such that every adjacent pair has an edge between them?
 - This is called a path
 - A cycle is a path from V to V
 - A path is **simple** if no vertex appears twice

European rail links (simplified)

- Can we get from London to Prague on the train?
- How about London to Stockholm?

20

Graph connectivity

- For any pair of nodes, is there a path between them?
 - Basic idea of the Internet: you can get from any computer to any other computer
 - This pair of nodes is called *connected*
 - A graph is connected if all nodes are connected
- Related question: if I remove an arbitrary node, is the graph still connected?
 - Is the Internet intact if any 1 computer fails?
 - Or any 1 edge between computers?

Another graph

Graph of Flickr images

37

Image graph of the Pantheon

Connected components

- Even if all nodes are not connected, there will be subsets that are all connected
 - Connected components

- Component 1: { V1, V3, V5 }
- Component 2: { V2, V4 }

39

Blobs are components!

Α	0	0	0	0	0	0	0	В	0
0	0	0	0	0	0	0	0	U	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	D	0	0	0	0	0
0	0	0	Е	F	G	0	0	0	0
0	0	0	Н	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Questions?

4