Blobs and Graphs

Administrivia

- Assignment 2
- First part due tomorrow by 5pm
- Second part due next Friday by 5pm

Prelims

- Prelim 1: March 1, 2012 (two weeks)
- Prelim 2: April 5, 2012
- Prelim 3: May 3, 2012
- All in class, all closed note

Cornell University

Problems, algorithms, programs

- A central distinction in CS
- Problem: what you want to compute
- "Find the median"
- Sometimes called a specification
- Algorithm: how to do it, in general
- "Repeated find biggest"
- "Quickselect"
" Program: how to do it, in a particular programming language
function [med] = find_median[A]

Back to the lightstick

- The lightstick forms a large "blob" in the thresholded image (among other blobs)

What is a blob?

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you're done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you're done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

- How do we figure this out?
- You are part of the blob if you are next to someone who is part of the blob
- But what does "next to" mean?

What is a neighbor?

- We need a notion of neighborhood
- Sometimes called a neighborhood system
- Standard system: use vertical and horizontal neighbors
- Called "NEWS": north, east, west, south
- 4-connected, since you have 4 neighbors
- Another possibility includes diagonals
- 8-connected neighborhood system

The long winding road to blobs

- We actually need to cover a surprising amount of material to get to blob finding
- Some of which is not obviously relevant
- But (trust me) it will all hang together!

A single idea can be used to think about:

= - Assigning frequencies to radio stations

- Scheduling your classes so they don't conflict
- Figuring out if a chemical is already known
- Finding groups in Facebook

- Ranking web search results

Cornell University

Graphs: always the answer

- We are going to look at an incredibly important concept called a graph
- Note: not the same as a plot
- Most problems can be thought of in terms of graphs
- But it may not be obvious, as with blobs

What is a graph?

- Loosely speaking, a set of things that are paired up in some way
- Precisely, a set of vertices V and edges E
- Vertices sometimes called nodes
- An edge (or link) connects a pair of vertices

Notes on graphs

- What can a graph represent?
- Cities and direct flights
- People and friendships
- Web pages and hyperlinks
- Rooms and doorways
- IMAGES!!!

Notes on graphs

- A graph isn't changed by:
- Drawing the edges differently - While preserving endpoints

- Renaming the vertices

Some major graph problems

- Graph coloring
- Ensuring that radio stations don't clash
- Graph connectivity
- How fragile is the internet?
- Graph cycles
- Helping FedEx/UPS/DHL plan a route
- Planarity testing
- Connecting computer chips on a motherboard
- Graph isomorphism
- Is a chemical structure already known?

Graph coloring problem

- Given a graph and a set of colors $\{1, \ldots, k\}$, assign each vertex a color
- Adjacent vertices have different colors

Radio frequencies via coloring

- How can we assign frequencies to a set of radio stations so that there are no clashes?
- Make a graph where each station is a vertex
- Put an edge between two stations that clash
- I.e., if their signal areas overlap
- Any coloring is a non-clashing assignment of frequencies
- Can you prove this? What about vice-versa?

Images as graphs

Images as graphs

Images as graphs

Graphs and paths

- Can you get from vertex V to vertex W?
- Is there a route from one city to another?
- More precisely, is there a sequence of vertices $\mathrm{V}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}, \mathrm{W}$ such that every adjacent pair has an edge between them?
- This is called a path
- A cycle is a path from V to V
- A path is simple if no vertex appears twice

European rail links (simplified)

- Can we get from London to Prague on the train?
- How about London to Stockholm?

Cornell University

Graph connectivity

- For any pair of nodes, is there a path between them?
- Basic idea of the Internet: you can get from any computer to any other computer
- This pair of nodes is called connected
- A graph is connected if all nodes are connected
- Related question: if I remove an arbitrary node, is the graph still connected?
- Is the Internet intact if any 1 computer fails?
- Or any 1 edge between computers?

Friend wheel

Another graph

Graph of Flickr images

Image graph of the Pantheon

Connected components

- Even if all nodes are not connected, there will be subsets that are all connected
- Connected components

- Component 1: \{ V1, V3, V5 \}
- Component 2: \{ V2, V4 \}

Blobs are components!

A	0	0	0	0	0	0	0	B	0
0	0	0	0	0	0	0	0	C	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	D	0	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Questions?

