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Administrivia 

 

 Assignment 2 is out 

– First part due on Friday by 4:30pm 

– Second part due next Friday by 4:30pm 

– Demos in the lab 

 

 Quiz 2 on Thursday 

– Coverage through today 

      (topics include running time, sorting) 

– Closed book / closed note 
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Recap from last time 

 

 We can solve the selection problem by 
sorting the numbers first 

 

 We’ve learned two ways to do this so far: 

1. Selection sort 

2. Quicksort 
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Quicksort 

1.  Pick an element (pivot) 

2.  Partition the array into elements < pivot, 
= to pivot, and > pivot 

3.  Quicksort these smaller arrays separately 

 

 What is the worst-case running time? 

 What is the expected running time (on a 
random input)? 
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Back to the selection problem 

 Can solve with quicksort 

– Faster (on average) than “repeated remove biggest” 

 Is there a better way? 

 

 Rev. Charles L. Dodgson’s problem 

– Based on how to run a tennis tournament 

– Specifically, how to award 2nd prize fairly 
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• How many teams were in the tournament? 
• How many games were played? 

• Which is the second-best team? 

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg


Standard Tournament 

 Example 

         [ 8 3 1 2 4 6 7 5 ] 

 Compare everyone to their neighbor, keep 
the larger one 

  

          [ 8   2   6   7 ] 

           [  8       7  ] 

             [    8    ] 
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Finding the second best team 

 Could use quicksort to sort the teams 

 

 Step 1: Choose one team as a pivot (say, Arizona) 

 Step 2: Arizona plays every team 

 Step 3: Put all teams worse than Arizona in Group 
1, all teams better than Arizona in Group 2 (no ties 
allowed) 

 Step 4: Recurse on Groups 1 and 2 

 … eventually will rank all the teams … 
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Quicksort Tournament 

 (Note this is a bit silly – AZ plays 63 
games) 

 This gives us a ranking of all teams 

– What if we just care about finding the 2nd-best 
team? 
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Quicksort Tournament 

  Step 1: Choose one team (say, Arizona) 

  Step 2: Arizona plays every team 

  Step 3: Put all teams worse than Arizona in 
Group 1, all teams better than Arizona in 
Group 2 (no ties allowed) 

  Step 4: Recurse on groups 1 and 2 

      … eventually will rank all the teams … 

 

Modifying quicksort to select 

 Suppose Arizona beats 36 teams, and 
loses to 27 teams 

 

 

 

 

 

 If we just want to know the 2nd-best team, 
how can we save time? 
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< 27 teams 36 teams < { { Group 2 Group 1 



Modifying quicksort to select – 
Finding the 2nd best team 
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< 27 teams 36 teams < { { Group 2 Group 1 

< 10 teams 16 teams < { Group 2.2 { Group 2.1 

< 2 teams 7 teams < 

Modifying quicksort to select – 
Finding the 32nd best team 
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< 27 teams 36 teams < { { Group 2 Group 1 

< 15 teams 20 teams < { Group 1.2 { Group 1.1 

- Q: Which group do we visit next? 
- The 32nd best team overall is the  
 4th best team in Group 1 
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Find kth largest element in A 
(< than k-1 others) 

MODIFIED QUICKSORT(A, k): 

 Pick an element in A as the pivot, call it x 

 Divide A into A1 (<x), A2 (=x), A3 (>x) 

 If k < length(A3) 

– MODIFIED QUICKSORT (A3, k) 

 If k > length(A2) + length(A3) 

– Let j = k – [length(A2) + length(A3)] 

– MODIFIED QUICKSORT (A1, j)  

 Otherwise, return x 

A = [ 6.0  5.4  5.5  6.2  5.3  5.0  5.9 ] 

Modified quicksort 

 We’ll call this quickselect 

 Let’s consider the running time… 

14 

MODIFIED QUICKSORT(A, k): 

 Pick an element in A as the pivot, call it x 

 Divide A into A1 (<x), A2 (=x), A3 (>x) 

 If k < length(A3) 

– Find the element < k others in A3 

 If k > length(A2) + length(A3) 

– Let j = k – [length(A2) + length(A3)] 

– Find the element < j others in A1  

 Otherwise, return x 
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What is the running time of: 
 Finding the 1st element? 

– O(1) (effort doesn’t depend on input) 

 

 Finding the biggest element? 

– O(n) (constant work per input element) 

 

 Finding the median by repeatedly finding and 
removing the biggest element? 

– O(n2) (linear work per input element) 

 

 Finding the median using quickselect? 

– Worst case?  O(________) 

– Best case?    O(________) 

Quickselect – “medium” case 

 

 Suppose we split the array in half each 
time (i.e., happen to choose the median 
as the pivot) 

 

 How many comparisons will there be? 
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How many comparisons? 
(“medium” case) 

 Suppose length(A) == n 

 

 Round 1: Compare n elements to the pivot 

     … now break the array in half, quickselect one half … 

 

 Round 2: For remaining half, compare n / 2 
elements to the pivot (total # comparisons = n / 2) 

    … now break the half in half … 

 

 Round 3: For remaining quarter, compare n / 4 
elements to the pivot (total # comparisons = n / 4) 
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Number of comparisons =  

      n + n / 2 + n / 4 + n / 8 + … + 1 

           = ? 

 

     The “medium” case is O(n)! 
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How many comparisons? 
(“medium” case) 
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Quickselect 

 

 For random input this method actually 
runs in linear time (beyond the scope of 
this class) 

 The worst case is still bad 

 Quickselect gives us a way to find the kth 
element without actually sorting the array! 

 

Quickselect 

 It’s possible to select in guaranteed linear 
time (1973) 

– Rev. Dodgson’s problem 

– But the code is a little messy 

• And the analysis is messier 

http://en.wikipedia.org/wiki/Selection_algorithm 

 Beyond the scope of this course 
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http://en.wikipedia.org/wiki/Selection_algorithm


Questions? 
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Back to the lightstick 

 By using quickselect we can find the 5% 
largest (or smallest) element 

– This allows us to efficiently compute the 
trimmed mean 
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What about the median? 

 Another way to avoid our bad data points:  

– Use the median instead of the mean 

 

 

0 50 100 150 200 250 

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs 

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs 

Median vector 

 Mean, like median, was defined in 1D 

– For a 2D mean we used the centroid 

– Mean of x coordinates and y coordinates 
separately  

• Call this the “mean vector” 

 

– Does this work for the median also? 
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What is the median vector? 
 In 1900, statisticians wanted 

to find the “geographical 
center of the population” to 
quantify westward shift 

 Why not the centroid? 

– Someone being born in San 
Francisco changes the centroid 
much more than someone being 
born in Indiana 

 What about the “median 
vector”? 

– Take the median of the x 
coordinates and the median of the 
y coordinates separately 
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Median vector 

 A little thought will show you that this 
doesn’t really make a lot of sense 

– Nonetheless, it’s a common solution, and we 
will implement it for CS1114 

– In situations like ours it works pretty well 

 It’s almost never an actual datapoint 

 It depends upon rotations! 
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Can we do even better? 

 None of what we described works that well 
if we have widely scattered red pixels 

– And we can’t figure out lightstick orientation 

 Is it possible to do even better? 

– Yes! 

 We will focus on: 

– Finding “blobs” (connected red pixels) 

– Summarizing the shape of a blob 

– Computing orientation from this 

 We’ll need brand new tricks! 



Back to the lightstick 
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• The lightstick forms a large “blob” in the 
 thresholded image (among other blobs) 
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What is a blob? 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 
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Finding blobs 

1. Pick a 1 to start with, where you don’t 
know which blob it is in 

– When there aren’t any, you’re done 

2. Give it a new blob color 

3. Assign the same blob color to each pixel 
that is part of the same blob 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
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Finding blobs 

1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 


