

Quickselect

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

2

Administrivia

 Assignment 2 is out

– First part due on Friday by 4:30pm

– Second part due next Friday by 4:30pm

– Demos in the lab

 Quiz 2 on Thursday

– Coverage through today

 (topics include running time, sorting)

– Closed book / closed note

3

Recap from last time

 We can solve the selection problem by
sorting the numbers first

 We’ve learned two ways to do this so far:

1. Selection sort

2. Quicksort

4

Quicksort

1. Pick an element (pivot)

2. Partition the array into elements < pivot,
= to pivot, and > pivot

3. Quicksort these smaller arrays separately

 What is the worst-case running time?

 What is the expected running time (on a
random input)?

5

Back to the selection problem

 Can solve with quicksort

– Faster (on average) than “repeated remove biggest”

 Is there a better way?

 Rev. Charles L. Dodgson’s problem

– Based on how to run a tennis tournament

– Specifically, how to award 2nd prize fairly

6

• How many teams were in the tournament?
• How many games were played?

• Which is the second-best team?

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg

Standard Tournament

 Example

 [8 3 1 2 4 6 7 5]

 Compare everyone to their neighbor, keep
the larger one

 [8 2 6 7]

 [8 7]

 [8]

7

Finding the second best team

 Could use quicksort to sort the teams

 Step 1: Choose one team as a pivot (say, Arizona)

 Step 2: Arizona plays every team

 Step 3: Put all teams worse than Arizona in Group
1, all teams better than Arizona in Group 2 (no ties
allowed)

 Step 4: Recurse on Groups 1 and 2

 … eventually will rank all the teams …

8

Quicksort Tournament

 (Note this is a bit silly – AZ plays 63
games)

 This gives us a ranking of all teams

– What if we just care about finding the 2nd-best
team?

9

Quicksort Tournament

 Step 1: Choose one team (say, Arizona)

 Step 2: Arizona plays every team

 Step 3: Put all teams worse than Arizona in
Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

 Step 4: Recurse on groups 1 and 2

 … eventually will rank all the teams …

Modifying quicksort to select

 Suppose Arizona beats 36 teams, and
loses to 27 teams

 If we just want to know the 2nd-best team,
how can we save time?

10

< 27 teams 36 teams < { { Group 2 Group 1

Modifying quicksort to select –
Finding the 2nd best team

11

< 27 teams 36 teams < { { Group 2 Group 1

< 10 teams 16 teams < { Group 2.2 { Group 2.1

< 2 teams 7 teams <

Modifying quicksort to select –
Finding the 32nd best team

12

< 27 teams 36 teams < { { Group 2 Group 1

< 15 teams 20 teams < { Group 1.2 { Group 1.1

- Q: Which group do we visit next?
- The 32nd best team overall is the
 4th best team in Group 1

13

Find kth largest element in A
(< than k-1 others)

MODIFIED QUICKSORT(A, k):

 Pick an element in A as the pivot, call it x

 Divide A into A1 (<x), A2 (=x), A3 (>x)

 If k < length(A3)

– MODIFIED QUICKSORT (A3, k)

 If k > length(A2) + length(A3)

– Let j = k – [length(A2) + length(A3)]

– MODIFIED QUICKSORT (A1, j)

 Otherwise, return x

A = [6.0 5.4 5.5 6.2 5.3 5.0 5.9]

Modified quicksort

 We’ll call this quickselect

 Let’s consider the running time…

14

MODIFIED QUICKSORT(A, k):

 Pick an element in A as the pivot, call it x

 Divide A into A1 (<x), A2 (=x), A3 (>x)

 If k < length(A3)

– Find the element < k others in A3

 If k > length(A2) + length(A3)

– Let j = k – [length(A2) + length(A3)]

– Find the element < j others in A1

 Otherwise, return x

15

What is the running time of:
 Finding the 1st element?

– O(1) (effort doesn’t depend on input)

 Finding the biggest element?

– O(n) (constant work per input element)

 Finding the median by repeatedly finding and
removing the biggest element?

– O(n2) (linear work per input element)

 Finding the median using quickselect?

– Worst case? O(________)

– Best case? O(________)

Quickselect – “medium” case

 Suppose we split the array in half each
time (i.e., happen to choose the median
as the pivot)

 How many comparisons will there be?

16

How many comparisons?
(“medium” case)

 Suppose length(A) == n

 Round 1: Compare n elements to the pivot

 … now break the array in half, quickselect one half …

 Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)

 … now break the half in half …

 Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)

17

Number of comparisons =

 n + n / 2 + n / 4 + n / 8 + … + 1

 = ?

  The “medium” case is O(n)!

18

How many comparisons?
(“medium” case)

19

Quickselect

 For random input this method actually
runs in linear time (beyond the scope of
this class)

 The worst case is still bad

 Quickselect gives us a way to find the kth
element without actually sorting the array!

Quickselect

 It’s possible to select in guaranteed linear
time (1973)

– Rev. Dodgson’s problem

– But the code is a little messy

• And the analysis is messier

http://en.wikipedia.org/wiki/Selection_algorithm

 Beyond the scope of this course

20

http://en.wikipedia.org/wiki/Selection_algorithm

Questions?

21

22

Back to the lightstick

 By using quickselect we can find the 5%
largest (or smallest) element

– This allows us to efficiently compute the
trimmed mean

23

What about the median?

 Another way to avoid our bad data points:

– Use the median instead of the mean

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs

Median vector

 Mean, like median, was defined in 1D

– For a 2D mean we used the centroid

– Mean of x coordinates and y coordinates
separately

• Call this the “mean vector”

– Does this work for the median also?

24

25

What is the median vector?
 In 1900, statisticians wanted

to find the “geographical
center of the population” to
quantify westward shift

 Why not the centroid?

– Someone being born in San
Francisco changes the centroid
much more than someone being
born in Indiana

 What about the “median
vector”?

– Take the median of the x
coordinates and the median of the
y coordinates separately

26

27

Median vector

 A little thought will show you that this
doesn’t really make a lot of sense

– Nonetheless, it’s a common solution, and we
will implement it for CS1114

– In situations like ours it works pretty well

 It’s almost never an actual datapoint

 It depends upon rotations!

28

Can we do even better?

 None of what we described works that well
if we have widely scattered red pixels

– And we can’t figure out lightstick orientation

 Is it possible to do even better?

– Yes!

 We will focus on:

– Finding “blobs” (connected red pixels)

– Summarizing the shape of a blob

– Computing orientation from this

 We’ll need brand new tricks!

Back to the lightstick

29

• The lightstick forms a large “blob” in the
 thresholded image (among other blobs)

30

What is a blob?

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0

31

Finding blobs

1. Pick a 1 to start with, where you don’t
know which blob it is in

– When there aren’t any, you’re done

2. Give it a new blob color

3. Assign the same blob color to each pixel
that is part of the same blob

32

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

33

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

34

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

35

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

36

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

37

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

