Quickselect

Administrivia

- Assignment 2 is out
- First part due on Friday by $4: 30$ pm
- Second part due next Friday by 4:30pm
- Demos in the lab
- Quiz 2 on Thursday
- Coverage through today
(topics include running time, sorting)
- Closed book / closed note

Recap from last time

- We can solve the selection problem by sorting the numbers first
- We've learned two ways to do this so far:

1. Selection sort
2. Quicksort

Cornell University

Quicksort

1. Pick an element (pivot)
2. Partition the array into elements < pivot, = to pivot, and > pivot
3. Quicksort these smaller arrays separately

- What is the worst-case running time?
- What is the expected running time (on a random input)?

Back to the selection problem

- Can solve with quicksort
- Faster (on average) than "repeated remove biggest"
- Is there a better way?
- Rev. Charles L. Dodgson's problem
- Based on how to run a tennis tournament
- Specifically, how to award $2^{\text {nd }}$ prize fairly

- How many teams were in the tournament?
- How many games were played?
- Which is the second-best team?

Standard Tournament

- Example

$$
\left[\begin{array}{lllllllll}
8 & 3 & 1 & 2 & 4 & 6 & 7 & 5
\end{array}\right]
$$

- Compare everyone to their neighbor, keep the larger one

Finding the second best team

- Could use quicksort to sort the teams
- Step 1: Choose one team as a pivot (say, Arizona)
- Step 2: Arizona plays every team
- Step 3: Put all teams worse than Arizona in Group 1, all teams better than Arizona in Group 2 (no ties allowed)
- Step 4: Recurse on Groups 1 and 2
- ... eventually will rank all the teams ...

Quicksort Tournament

```
Quicksort Tournament
Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in
Group 1, all teams better than Arizona in
Group 2 (no ties allowed)
Step 4: Recurse on groups 1 and 2
    .. eventually will rank all the teams ...
```

- (Note this is a bit silly - AZ plays 63 games)
- This gives us a ranking of all teams
- What if we just care about finding the $2^{\text {nd }}$-best team?

Modifying quicksort to select

- Suppose Arizona beats 36 teams, and loses to 27 teams

- If we just want to know the $2^{\text {nd }}$-best team, how can we save time?

Modifying quicksort to select Finding the $2^{\text {nd }}$ best team

$$
7 \text { teams }<
$$

Modifying quicksort to select Finding the $32^{\text {nd }}$ best team

- Q: Which group do we visit next?
- The $32^{\text {nd }}$ best team overall is the $4^{\text {th }}$ best team in Group 1

Find $\mathbf{k}^{\text {th }}$ largest element in A ($<$ than k-1 others)

$A=[6.0$
5.4
5.5
6.2
5.3
5.0
5.9]

MODIFIED QUICKSORT(A, k):

- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If k < length(A3)
- MODIFIED QUICKSORT (A3, k)
- If $k>$ length(A2) + length(A3)
- Let $\mathrm{j}=\mathrm{k}$ - [length(A2) + length(A3)]
- MODIFIED QUICKSORT (A1, j)
- Otherwise, return x

Modified quicksort

MODIFIED QUICKSORT(A, k):

- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If k < length(A3)
- Find the element $<k$ others in A3
- If $k>$ length $(A 2)+$ length $(A 3)$
- Let $\mathrm{j}=\mathrm{k}-$ [length(A2) + length(A3)]
- Find the element < j others in A1
- Otherwise, return x
- We'll call this quickselect
- Let's consider the running time...

What is the running time of:

- Finding the $1^{\text {st }}$ element?
- O(1) (effort doesn't depend on input)

- Finding the biggest element?
- $O(n)$ (constant work per input element)

- Finding the median by repeatedly finding and removing the biggest element?
- $O\left(n^{2}\right)$ (linear work per input element)
- Finding the median using quickselect?
- Worst case?
- Best case?
\qquad)
\qquad

Quickselect - "medium" case

- Suppose we split the array in half each time (i.e., happen to choose the median as the pivot)
- How many comparisons will there be?

How many comparisons?
 ("medium" case)

- Suppose length (A) == n

- Round 1: Compare n elements to the pivot
... now break the array in half, quickselect one half ..

- Round 2: For remaining half, compare $n / 2$ elements to the pivot (total \# comparisons = n / 2)
... now break the half in half ...

- Round 3: For remaining quarter, compare n / 4 elements to the pivot (total \# comparisons = n / 4)

How many comparisons? ("medium" case)

Number of comparisons $=$

$$
\begin{aligned}
& n+n / 2+n / 4+n / 8+\ldots+1 \\
& \quad=?
\end{aligned}
$$

\rightarrow The "medium" case is $\mathrm{O}(\mathrm{n})$!

Quickselect

- For random input this method actually runs in linear time (beyond the scope of this class)
- The worst case is still bad
- Quickselect gives us a way to find the $k^{\text {th }}$ element without actually sorting the array!

Quickselect

- It's possible to select in guaranteed linear time (1973)
- Rev. Dodgson's problem
- But the code is a little messy
- And the analysis is messier
http://en.wikipedia.org/wiki/Selection algorithm
- Beyond the scope of this course

Questions?

Back to the lightstick

- By using quickselect we can find the 5\% largest (or smallest) element
- This allows us to efficiently compute the trimmed mean

What about the median?

- Another way to avoid our bad data points:
- Use the median instead of the mean

Median vector

- Mean, like median, was defined in 1D
- For a 2D mean we used the centroid
- Mean of x coordinates and y coordinates separately
- Call this the "mean vector"
- Does this work for the median also?

What is the median vector?

- In 1900, statisticians wanted to find the "geographical center of the population" to quantify westward shift
- Why not the centroid?
- Someone being born in San Francisco changes the centroid much more than someone being born in Indiana
- What about the "median vector"?
- Take the median of the x coordinates and the median of the y coordinates separately

Position of the Geographic Center of Area, Mean and Median Centers of Population: 2000

Median vector

- A little thought will show you that this doesn't really make a lot of sense
- Nonetheless, it's a common solution, and we will implement it for CS1114
- In situations like ours it works pretty well
- It's almost never an actual datapoint
- It depends upon rotations!

Can we do even better?

- None of what we described works that well if we have widely scattered red pixels
- And we can't figure out lightstick orientation
- Is it possible to do even better?
- Yes!
- We will focus on:
- Finding "blobs" (connected red pixels)
- Summarizing the shape of a blob
- Computing orientation from this
- We'll need brand new tricks!

Back to the lightstick

- The lightstick forms a large "blob" in the thresholded image (among other blobs)

What is a blob?

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you're done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

