

Quickselect

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

2

Administrivia

 Assignment 2 is out

– First part due on Friday by 4:30pm

– Second part due next Friday by 4:30pm

– Demos in the lab

 Quiz 2 on Thursday

– Coverage through today

 (topics include running time, sorting)

– Closed book / closed note

3

Recap from last time

 We can solve the selection problem by
sorting the numbers first

 We’ve learned two ways to do this so far:

1. Selection sort

2. Quicksort

4

Quicksort

1. Pick an element (pivot)

2. Partition the array into elements < pivot,
= to pivot, and > pivot

3. Quicksort these smaller arrays separately

 What is the worst-case running time?

 What is the expected running time (on a
random input)?

5

Back to the selection problem

 Can solve with quicksort

– Faster (on average) than “repeated remove biggest”

 Is there a better way?

 Rev. Charles L. Dodgson’s problem

– Based on how to run a tennis tournament

– Specifically, how to award 2nd prize fairly

6

• How many teams were in the tournament?
• How many games were played?

• Which is the second-best team?

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg

Standard Tournament

 Example

 [8 3 1 2 4 6 7 5]

 Compare everyone to their neighbor, keep
the larger one

 [8 2 6 7]

 [8 7]

 [8]

7

Finding the second best team

 Could use quicksort to sort the teams

 Step 1: Choose one team as a pivot (say, Arizona)

 Step 2: Arizona plays every team

 Step 3: Put all teams worse than Arizona in Group
1, all teams better than Arizona in Group 2 (no ties
allowed)

 Step 4: Recurse on Groups 1 and 2

 … eventually will rank all the teams …

8

Quicksort Tournament

 (Note this is a bit silly – AZ plays 63
games)

 This gives us a ranking of all teams

– What if we just care about finding the 2nd-best
team?

9

Quicksort Tournament

 Step 1: Choose one team (say, Arizona)

 Step 2: Arizona plays every team

 Step 3: Put all teams worse than Arizona in
Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

 Step 4: Recurse on groups 1 and 2

 … eventually will rank all the teams …

Modifying quicksort to select

 Suppose Arizona beats 36 teams, and
loses to 27 teams

 If we just want to know the 2nd-best team,
how can we save time?

10

< 27 teams 36 teams < { { Group 2 Group 1

Modifying quicksort to select –
Finding the 2nd best team

11

< 27 teams 36 teams < { { Group 2 Group 1

< 10 teams 16 teams < { Group 2.2 { Group 2.1

< 2 teams 7 teams <

Modifying quicksort to select –
Finding the 32nd best team

12

< 27 teams 36 teams < { { Group 2 Group 1

< 15 teams 20 teams < { Group 1.2 { Group 1.1

- Q: Which group do we visit next?
- The 32nd best team overall is the
 4th best team in Group 1

13

Find kth largest element in A
(< than k-1 others)

MODIFIED QUICKSORT(A, k):

 Pick an element in A as the pivot, call it x

 Divide A into A1 (<x), A2 (=x), A3 (>x)

 If k < length(A3)

– MODIFIED QUICKSORT (A3, k)

 If k > length(A2) + length(A3)

– Let j = k – [length(A2) + length(A3)]

– MODIFIED QUICKSORT (A1, j)

 Otherwise, return x

A = [6.0 5.4 5.5 6.2 5.3 5.0 5.9]

Modified quicksort

 We’ll call this quickselect

 Let’s consider the running time…

14

MODIFIED QUICKSORT(A, k):

 Pick an element in A as the pivot, call it x

 Divide A into A1 (<x), A2 (=x), A3 (>x)

 If k < length(A3)

– Find the element < k others in A3

 If k > length(A2) + length(A3)

– Let j = k – [length(A2) + length(A3)]

– Find the element < j others in A1

 Otherwise, return x

15

What is the running time of:
 Finding the 1st element?

– O(1) (effort doesn’t depend on input)

 Finding the biggest element?

– O(n) (constant work per input element)

 Finding the median by repeatedly finding and
removing the biggest element?

– O(n2) (linear work per input element)

 Finding the median using quickselect?

– Worst case? O(________)

– Best case? O(________)

Quickselect – “medium” case

 Suppose we split the array in half each
time (i.e., happen to choose the median
as the pivot)

 How many comparisons will there be?

16

How many comparisons?
(“medium” case)

 Suppose length(A) == n

 Round 1: Compare n elements to the pivot

 … now break the array in half, quickselect one half …

 Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)

 … now break the half in half …

 Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)

17

Number of comparisons =

 n + n / 2 + n / 4 + n / 8 + … + 1

 = ?

 The “medium” case is O(n)!

18

How many comparisons?
(“medium” case)

19

Quickselect

 For random input this method actually
runs in linear time (beyond the scope of
this class)

 The worst case is still bad

 Quickselect gives us a way to find the kth
element without actually sorting the array!

Quickselect

 It’s possible to select in guaranteed linear
time (1973)

– Rev. Dodgson’s problem

– But the code is a little messy

• And the analysis is messier

http://en.wikipedia.org/wiki/Selection_algorithm

 Beyond the scope of this course

20

http://en.wikipedia.org/wiki/Selection_algorithm

Questions?

21

22

Back to the lightstick

 By using quickselect we can find the 5%
largest (or smallest) element

– This allows us to efficiently compute the
trimmed mean

23

What about the median?

 Another way to avoid our bad data points:

– Use the median instead of the mean

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs

Median vector

 Mean, like median, was defined in 1D

– For a 2D mean we used the centroid

– Mean of x coordinates and y coordinates
separately

• Call this the “mean vector”

– Does this work for the median also?

24

25

What is the median vector?
 In 1900, statisticians wanted

to find the “geographical
center of the population” to
quantify westward shift

 Why not the centroid?

– Someone being born in San
Francisco changes the centroid
much more than someone being
born in Indiana

 What about the “median
vector”?

– Take the median of the x
coordinates and the median of the
y coordinates separately

26

27

Median vector

 A little thought will show you that this
doesn’t really make a lot of sense

– Nonetheless, it’s a common solution, and we
will implement it for CS1114

– In situations like ours it works pretty well

 It’s almost never an actual datapoint

 It depends upon rotations!

28

Can we do even better?

 None of what we described works that well
if we have widely scattered red pixels

– And we can’t figure out lightstick orientation

 Is it possible to do even better?

– Yes!

 We will focus on:

– Finding “blobs” (connected red pixels)

– Summarizing the shape of a blob

– Computing orientation from this

 We’ll need brand new tricks!

Back to the lightstick

29

• The lightstick forms a large “blob” in the
 thresholded image (among other blobs)

30

What is a blob?

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0

31

Finding blobs

1. Pick a 1 to start with, where you don’t
know which blob it is in

– When there aren’t any, you’re done

2. Give it a new blob color

3. Assign the same blob color to each pixel
that is part of the same blob

32

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

33

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

34

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

35

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

36

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

37

Finding blobs

1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

