Sorting and selection - Part 2

Administrivia

- Assignment 1 due tomorrow by 5pm
- Assignment 2 will be out tomorrow
- Two parts: smaller part due next Friday, larger part due in two weeks
- Quiz next Thursday

Neat CS talk today

- Culturomics: Quantitative Analysis of Culture Using Millions of Digitized Books
- Upson B-17 4:15pm

Cornell University

Recap from last time

- How can we quickly compute the median / trimmed mean of an array?
- The selection problem
" One idea: sort the array first
- This makes the selection problem easier
- How do we sort?

Recap from last time

- Last time we looked at one sorting algorithm, selection sort
- How fast is selection sort?

Speed of selection sort

- Total number of comparisons:

$$
\begin{gathered}
n+(n-1)+(n-2)+\ldots+1 \\
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
\end{gathered}
$$

Is this the best we can do?

- Maybe the problem of sorting n numbers is intrinsically $\mathrm{O}\left(n^{2}\right)$
- (i.e., maybe all possible algorithms for sorting n numbers are $\mathrm{O}\left(n^{2}\right)$)
- Or maybe we just haven't found the right algorithm...
- Let's try a different approach
- Back to the problem of sorting the actors...

Cornell University

Sorting, $2^{\text {nd }}$ attempt

- Suppose we tell all the actors
- shorter than 5.5 feet to move to the left side of the room
- and all actors
- taller than 5.5 feet to move to the right side of the room
- (actors who are exactly 5.5 feet move to the middle)
$\left[\begin{array}{llll}6.0 & 5.4 & 5.5 & 6.2\end{array}\right.$
$\left[\begin{array}{llllllll}5.4 & 5.3 & 5.0 & 5.5 & 6.0 & 6.2 & 5.9\end{array}\right]$

Sorting, $2^{\text {nd }}$ attempt

$\left[\begin{array}{llllllll}6.0 & 5.4 & 5.5 & 6.2 & 5.3 & 5.0 & 5.9\end{array}\right]$
$\left[\begin{array}{ll}5.4 & 5.3 \\ & \\ < & 5.0 \\ 5.5\end{array} \left\lvert\, \begin{array}{llll}5.5 & \left.\begin{array}{lll}6.0 & 6.2 & 5.9 \\ >5.5\end{array}\right]\end{array}\right.\right.$

- Not quite done, but it's a start
- We've put every element on the correct side of 5.5 (the pivot)
- What next?
- Divide and conquer

Cornell University

How do we select the pivot?

- How did we know to select 5.5 as the pivot?
" Answer: average-ish human height
- In general, we might not know a good value
- Solution: just pick some value from the array (say, the first one)

Quicksort

This algorithm is called quicksort

1. Pick an element (pivot)
2. Partition the array into elements < pivot, = to pivot, and > pivot
3. Quicksort these smaller arrays separately

- Example of a recursive algorithm (defined in terms of itself)

Quicksort example

Quicksort - pseudo-code

```
function [ S ] = quicksort(A)
% Sort an array using quicksort
n = length(A);
if n <= 1
    S = A; return; % The base case
end
pivot = A(1); % Choose the pivot
smaller = []; equal = []; larger = [];
% Compare all elements to the pivot:
% Add all elements smaller than pivot to 'smaller'
% Add all elements equal to pivot to 'equal'
% Add all elements larger than pivot to 'larger'
% Sort 'smaller' and 'larger' separately
smaller = quicksort(smaller); larger = quicksort(larger); % This
    is where the recursion happens
S = [ smaller equal larger ];
```


Quicksort and the pivot

- There are lots of ways to make quicksort fast, for example by swapping elements
- We will cover these in section

Quicksort and the pivot

- With a bad pivot this algorithm does quite poorly
- Suppose we happen to always pick the smallest element of the array?
- What does this remind you of?
- When can the bad case easily happen?

Quicksort and the pivot

- With a good choice of pivot the algorithm does quite well
- Suppose we get lucky and choose the median every time
- How many comparisons will we do?
- Every time quicksort is called, we have to:
\% Compare all elements to the pivot

How many comparisons? (Lucky pivot case)

- Suppose length (A) == n

- Round 1: Compare n elements to the pivot ... now break the array in half, quicksort the two halves ...

- Round 2: For each half, compare n / 2 elements to the pivot (total \# comparisons = ?)
... now break each half into halves ...

- Round 3: For each quarter, compare n / 4 elements to the pivot (total \# comparisons = ?)

How many comparisons? (Lucky pivot case)

How many rounds will this run for?

How many comparisons? (Lucky pivot case)

- During each round, we do a total of __ comparisons
- There are \qquad rounds
- The total number of comparisons is
- With "lucky pivots" quicksort is

O(__)

Can we expect to be lucky?

- Performance depends on the input
- "Unlucky pivots" (worst-case) give $O\left(n^{2}\right)$ performance
- "Lucky pivots" give O(\qquad performance
" For random inputs we get "lucky enough" - expected runtime on a random array is O \qquad

Questions?

Recursion

- Recursion is cool and useful
- Sierpinski triangle

- But use with caution
function $\mathbf{x}=$ factorial (n) $\mathbf{x}=\mathrm{n}$ * factorial (n - 1)
end

Back to the selection problem

- Can solve with quicksort
- Faster (on average) than "repeated remove biggest"
- Is there a better way?
- Rev. Charles L. Dodgson's problem
- Based on how to run a tennis tournament
- Specifically, how to award $2^{\text {nd }}$ prize fairly

- How many teams were in the tournament?
- How many games were played?
- Which is the second-best team?

