

Sorting and selection – Part 2

Prof. Noah Snavely

CS1114

http://cs1114.cs.cornell.edu

2

Administrivia

 Assignment 1 due tomorrow by 5pm

 Assignment 2 will be out tomorrow

– Two parts: smaller part due next Friday,
larger part due in two weeks

 Quiz next Thursday

Neat CS talk today

 Culturomics: Quantitative Analysis of
Culture Using Millions of Digitized
Books

 Upson B-17 4:15pm

3

Recap from last time

 How can we quickly compute the median /
trimmed mean of an array?

– The selection problem

 One idea: sort the array first

– This makes the selection problem easier

 How do we sort?

4

5

Recap from last time

 Last time we looked at one sorting
algorithm, selection sort

 How fast is selection sort?

Speed of selection sort

 Total number of comparisons:

 n + (n – 1) + (n – 2) + … + 1

6

n

i

nn
i

1 2

)1(

Is this the best we can do?

 Maybe the problem of sorting n numbers
is intrinsically O(n2)

– (i.e., maybe all possible algorithms for sorting
n numbers are O(n2))

 Or maybe we just haven’t found the right
algorithm…

 Let’s try a different approach

– Back to the problem of sorting the actors…

7

Sorting, 2nd attempt

 Suppose we tell all the actors

– shorter than 5.5 feet to move to the left side of the room

 and all actors

– taller than 5.5 feet to move to the right side of the room

– (actors who are exactly 5.5 feet move to the middle)

8

[6.0 5.4 5.5 6.2 5.3 5.0 5.9]

[5.4 5.3 5.0 5.5 6.0 6.2 5.9]

Sorting, 2nd attempt

 Not quite done, but it’s a start

 We’ve put every element on the correct side of
5.5 (the pivot)

 What next?

 Divide and conquer

9

[6.0 5.4 5.5 6.2 5.3 5.0 5.9]

[5.4 5.3 5.0 5.5 6.0 6.2 5.9]

< 5.5 > 5.5

How do we select the pivot?

 How did we know to select 5.5 as the pivot?

 Answer: average-ish human height

 In general, we might not know a good value

 Solution: just pick some value from the
array (say, the first one)

10

11

Quicksort

This algorithm is called quicksort

1. Pick an element (pivot)

2. Partition the array into elements < pivot,
= to pivot, and > pivot

3. Quicksort these smaller arrays separately

 Example of a recursive algorithm (defined
in terms of itself)

Quicksort example

12

[10 13 41 6 51 11 3]

[6 3 10 13 41 51 11]

[6 3] 10 [13 41 51 11]

[3 6] 10 [11 13 41 51]

[3] 6 10 [11] 13 [41 51]

Select pivot

Partition

Select pivot

Partition

3 6 10 11 13 [41 51]

3 6 10 11 13 41 [51]

3 6 10 11 13 41 51

6

10

13

41 Select pivot

Partition

Select pivot

Done

Quicksort – pseudo-code
function [S] = quicksort(A)

% Sort an array using quicksort

n = length(A);

if n <= 1

 S = A; return; % The base case

end

pivot = A(1); % Choose the pivot

smaller = []; equal = []; larger = [];

% Compare all elements to the pivot:

% Add all elements smaller than pivot to ‘smaller’

% Add all elements equal to pivot to ‘equal’

% Add all elements larger than pivot to ‘larger’

% Sort ‘smaller’ and ‘larger’ separately

smaller = quicksort(smaller); larger = quicksort(larger); % This

is where the recursion happens

S = [smaller equal larger];

13

14

Quicksort and the pivot

 There are lots of ways to make quicksort
fast, for example by swapping elements

– We will cover these in section

Quicksort and the pivot

 With a bad pivot this algorithm does quite
poorly

– Suppose we happen to always pick the
smallest element of the array?

– What does this remind you of?

 When can the bad case easily happen?

15

16

Quicksort and the pivot

 With a good choice of pivot the algorithm
does quite well

 Suppose we get lucky and choose the
median every time

 How many comparisons will we do?
– Every time quicksort is called, we have to:

 % Compare all elements to the pivot

How many comparisons?
(Lucky pivot case)

 Suppose length(A) == n

 Round 1: Compare n elements to the pivot

 … now break the array in half, quicksort the two halves …

 Round 2: For each half, compare n / 2 elements to
the pivot (total # comparisons = ?)

 … now break each half into halves …

 Round 3: For each quarter, compare n / 4 elements
to the pivot (total # comparisons = ?)

17

How many comparisons?
(Lucky pivot case)

How many rounds will this run for?

…

How many comparisons?
(Lucky pivot case)

 During each round, we do a total of __
comparisons

 There are ________ rounds

 The total number of comparisons is

 With “lucky pivots” quicksort is
O(_________)

19

Can we expect to be lucky?

 Performance depends on the input

 “Unlucky pivots” (worst-case) give O(n2)
performance

 “Lucky pivots” give O(_______)
performance

 For random inputs we get “lucky enough”
– expected runtime on a random array is
O(_______)

20

Questions?

21

Recursion

22

 Recursion is cool and useful

– Sierpinski triangle

 But use with caution
function x = factorial(n)

 x = n * factorial(n - 1)

end

23

Back to the selection problem

 Can solve with quicksort

– Faster (on average) than “repeated remove biggest”

 Is there a better way?

 Rev. Charles L. Dodgson’s problem

– Based on how to run a tennis tournament

– Specifically, how to award 2nd prize fairly

24

• How many teams were in the tournament?
• How many games were played?

• Which is the second-best team?

http://en.wikipedia.org/wiki/Image:LewisCarrollSelfPhoto.jpg

