Sorting and selection – Part 2

<table>
<thead>
<tr>
<th>[Image 99x394 to 198x422]</th>
<th>[Image 118x452 to 186x528]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Noah Snavely</td>
<td>CS1114</td>
</tr>
<tr>
<td>CS1114</td>
<td>http://cs1114.cs.cornell.edu</td>
</tr>
</tbody>
</table>

Administrivia

- Assignment 1 due tomorrow by 5pm
- Assignment 2 will be out tomorrow
 - Two parts: smaller part due next Friday, larger part due in two weeks
- Quiz next Thursday
Neat CS talk today

- Culturomics: Quantitative Analysis of Culture Using Millions of Digitized Books

- Upson B-17 4:15pm

Recap from last time

- How can we quickly compute the median / trimmed mean of an array?
 - The selection problem

- One idea: sort the array first
 - This makes the selection problem easier

- How do we sort?
Recap from last time

- Last time we looked at one sorting algorithm, selection sort

- How fast is selection sort?

Speed of selection sort

- Total number of comparisons:
 \[n + (n - 1) + (n - 2) + \ldots + 1 \]

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]
Is this the best we can do?

- Maybe the problem of sorting \(n \) numbers is intrinsically \(O(n^2) \)
 - (i.e., maybe all possible algorithms for sorting \(n \) numbers are \(O(n^2) \))

- Or maybe we just haven’t found the right algorithm...

- Let’s try a different approach
 - Back to the problem of sorting the actors...

Sorting, 2nd attempt

- Suppose we tell all the actors
 - shorter than 5.5 feet to move to the left side of the room
- and all actors
 - taller than 5.5 feet to move to the right side of the room
 - (actors who are exactly 5.5 feet move to the middle)

\[
\begin{array}{cccccccc}
6.0 & 5.4 & 5.5 & 6.2 & 5.3 & 5.0 & 5.9 & \\
5.4 & 5.3 & 5.0 & 5.5 & 6.0 & 6.2 & 5.9 & \\
\end{array}
\]
Sorting, 2nd attempt

[6.0 5.4 5.5 6.2 5.3 5.0 5.9]

[5.4 5.3 5.0 5.5 6.0 6.2 5.9]

- Not quite done, but it’s a start
- We’ve put every element on the correct side of 5.5 (the *pivot*)
- What next?

- *Divide and conquer*

How do we select the pivot?

- How did we know to select 5.5 as the pivot?
- Answer: average-ish human height
- In general, we might not know a good value
- Solution: just pick some value from the array (say, the first one)
Quicksort

This algorithm is called *quicksort*

1. Pick an element (**pivot**)
2. **Partition** the array into elements < pivot, = to pivot, and > pivot
3. Quicksort these smaller arrays separately

- Example of a *recursive* algorithm (defined in terms of itself)

```
Select pivot   [ 10 13 41 6 51 11 3 ]
Partition      [ 6 3 10 13 41 51 11 ]
Select pivot   [ 6 3 ] 10 [ 13 41 51 11 ]
Partition      3 6 10 11 13 [ 41 51 ]
Select pivot   3 6 10 11 13 41 [ 51 ]
Done           3 6 10 11 13 41 51
```
Quicksort – pseudo-code

function \([S] = \text{quicksort}(A)\)
% Sort an array using quicksort
n = length(A);
if n <= 1
 S = A; return; % The base case
end

pivot = A(1); % Choose the pivot
smaller = []; equal = []; larger = [];

% Compare all elements to the pivot:
% Add all elements smaller than pivot to ‘smaller’
% Add all elements equal to pivot to ‘equal’
% Add all elements larger than pivot to ‘larger’

% Sort ‘smaller’ and ‘larger’ separately
smaller = quicksort(smaller); larger = quicksort(larger); % This
is where the recursion happens
S = [smaller equal larger];

Quicksort and the pivot

- There are lots of ways to make quicksort fast, for example by swapping elements
 - We will cover these in section
Quicksort and the pivot

- With a bad pivot this algorithm does quite poorly
 - Suppose we happen to always pick the smallest element of the array?
 - What does this remind you of?

- When can the bad case easily happen?

Quicksort and the pivot

- With a good choice of pivot the algorithm does quite well
- Suppose we get lucky and choose the median every time
- How many comparisons will we do?
 - Every time \texttt{quicksort} is called, we have to:
 - \texttt{\% Compare all elements to the pivot}
How many comparisons? (Lucky pivot case)

- Suppose \(\text{length}(A) = n \)
- Round 1: Compare \(n \) elements to the pivot
 - now break the array in half, quicksort the two halves...
- Round 2: For each half, compare \(n/2 \) elements to the pivot (total # comparisons = ?)
 - now break each half into halves...
- Round 3: For each quarter, compare \(n/4 \) elements to the pivot (total # comparisons = ?)

How many rounds will this run for?
How many comparisons? (Lucky pivot case)

- During each round, we do a total of __ comparisons
- There are ________ rounds
- The total number of comparisons is _________
- With “lucky pivots” quicksort is O(__________)

Can we expect to be lucky?

- Performance depends on the input
- “Unlucky pivots” (worst-case) give O(n^2) performance
- “Lucky pivots” give O(_______) performance
- For random inputs we get “lucky enough” – expected runtime on a random array is O(_______)
Questions?

Recursion

- Recursion is cool and useful
 - Sierpinski triangle

- But use with caution

  ```
  function x = factorial(n)
      x = n * factorial(n - 1)
  end
  ```
Back to the selection problem

- Can solve with quicksort
 - Faster (on average) than “repeated remove biggest”
- Is there a better way?

- Rev. Charles L. Dodgson’s problem
 - Based on how to run a tennis tournament
 - Specifically, how to award 2nd prize fairly

- How many teams were in the tournament?
- How many games were played?
- Which is the second-best team?