

Sorting and Selection, Part 1

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

2

Administrivia

 Assignment 1 due Friday by 5pm

– Please sign up for a demo slot using CMS
(or demo before Friday)

 Assignment 2 out on Friday

“Corner cases”

 Sometimes the input to a function isn’t
what you expect

– What is the maximum element of a vector of
length 0?

 When writing a function, you should try
and anticipate such corner cases

3

Recap from last time

 We looked at the “trimmed mean” problem for
locating the lightstick

– Remove 5% of points on all sides, find centroid

 This is a version of a more general problem:

– Finding the kth largest element in an array

– Also called the “selection” problem

 We considered an algorithm that repeatedly
removes the largest element

– How fast is this algorithm?

4

5

Recap from last time

 Big-O notation allows us to reason about
speed without worrying about

– Getting lucky on the input

– Depending on our hardware

 Big-O of repeatedly removing the biggest
element?

– Worst-case (k = n/2, i.e., median) is
quadratic, O(n2)

6

Classes of algorithm speed
(complexity)

 Constant time algorithms, O(1)

– Do not depend on the input size

– Example: find the first element

 Linear time algorithms, O(n)

– Constant amount of work for every input item

– Example: find the largest element

 Quadratic time algorithms, O(n2)

– Linear amount of work for every input item

– Example: repeatedly removing max element

Asymptotic complexity

 Big-O only cares about the number of
operations as n (the size of the input)
grows large (n  ∞)

7

O(1) O(n)

Complexity classes

 Big-O doesn’t care about constant
coefficients

– “Constant of proportionality” doesn’t matter

8

O(n2)

9

 What is the complexity of:

1. Finding the 2nd biggest element (> all but 1)?

2. Finding the element bigger than all but 2%?
• Assume we do this by repeated “find biggest”

3. Multiplying two n-digit numbers (using long
multiplication)?

10

How to do selection better?

 If our input were sorted, we can do better

– Given 100 numbers in increasing order, we can
easily figure out the kth biggest or smallest
(with what time complexity?)

 Very important principle! (encapsulation)

– Divide your problem into pieces

• One person (or group) can provide sort

• The other person can use sort

– As long as both agree on what sort does, they

can work independently

– Can even “upgrade” to a faster sort

11

How to sort?

 Sorting is an ancient problem,
by the standards of CS

– First important “computer” sort
used for 1890 census, by
Hollerith (the 1880 census took 8
years, 1890 took just one)

 There are many sorting
algorithms

How to sort?

 Given an array of numbers:

 [10 2 5 30 4 8 19 102 53 3]

 How can we produce a sorted array?

 [2 3 4 5 8 10 19 30 53 102]

12

How to sort?

 A concrete version of the problem

– Suppose I want to sort all actors by height

– How do I do this?

13

…

Sorting, 1st attempt

 Idea: Given n actors

1. Find the shortest actor, put him/her first

2. Find the shortest actor in the remaining group, put
him/her second

 … Repeat …

n. Find the shortest actor in the remaining group (one
left), put him/her last

14

Sorting, 1st attempt

 What does this remind you of?

 This is called selection sort

 After round k, the first k entries are sorted

15

Algorithm 1

1. Find the shortest actor put him first

2. Find the shortest actor in the remaining group,
put him/her second

 … Repeat …

n. Find the shortest actor in the remaining group
put him/her last

Selection sort – pseudocode

16

function [A] = selection_sort(A)

% Returns a sorted version of array A

% by applying selection sort

% Uses in place sorting

n = length(A);

for i = 1:n

 % Find the smallest element in A(i:n)

 % Swap that element with something (what?)

end

Filling in the gaps

 % Find the smallest element in A(i:n)

 We pretty much know how to do this

 m = A(i); m_index = i;

 for j = i+1:n

 if A(j) < m

 m = A(j); m_index = j;

 end

 end

17

[10 13 41 6 51 11]

% After round 1,

% m = 6, m_index = 4

Filling in the gaps

 % Swap the smallest element with something

 % Swap element A(m_index) with A(i)

 A(i) = A(m_index);

 A(m_index) = A(i);

 tmp = A(i);

 A(i) = A(m_index);

 A(m_index) = tmp;

18

[10 13 41 6 51 11]

[6 13 41 10 51 11]

Putting it all together
function [A] = selection_sort(A)

% Returns a sorted version of array A

n = length(A);

for i = 1:n

 % Find the smallest element in A(i:len)

 m = A(i); m_index = i;

 for j = i:n

 if A(j) < m

 m = A(j); m_index = j;

 end

 end

 % Swap element A(m_index) with A(i)

 tmp = A(i);

 A(i) = A(m_index);

 A(m_index) = tmp;

end

19

Example of selection sort

20

[10 13 41 6 51 11]

[6 13 41 10 51 11]

[6 10 41 13 51 11]

[6 10 11 13 51 41]

[6 10 11 13 51 41]

[6 10 11 13 41 51]

[6 10 11 13 41 51]

Speed of selection sort

 Let n be the size of the array

 How fast is selection sort?

 O(1) O(n) O(n2) ?

 How many comparisons (<) does it do?

 First iteration: n comparisons

 Second iteration: n – 1 comparisons

 …

 nth iteration: 1 comparison

21

Speed of selection sort

 Total number of comparisons:

 n + (n – 1) + (n – 2) + … + 1

 Work grows in proportion to n2 

 selection sort is O(n2)

22







n

i

nn
i

1 2

)1(

Other ideas for sorting?

23

