Sorting and Selection, Part 1

Administrivia

- Assignment 1 due Friday by 5pm
- Please sign up for a demo slot using CMS (or demo before Friday)
- Assignment 2 out on Friday

"Corner cases"

- Sometimes the input to a function isn't what you expect
- What is the maximum element of a vector of length 0 ?
- When writing a function, you should try and anticipate such corner cases

Recap from last time

" We looked at the "trimmed mean" problem for locating the lightstick

- Remove 5\% of points on all sides, find centroid
- This is a version of a more general problem:
- Finding the $k^{\text {th }}$ largest element in an array
- Also called the "selection" problem
- We considered an algorithm that repeatedly removes the largest element
- How fast is this algorithm?

Recap from last time

- Big-O notation allows us to reason about speed without worrying about
- Getting lucky on the input
- Depending on our hardware
- Big-O of repeatedly removing the biggest element?
- Worst-case ($k=n / 2$, i.e., median) is quadratic, $\mathrm{O}\left(n^{2}\right)$

Cornell University

Classes of algorithm speed

 (complexity)

- Constant time algorithms, $O(1)$
- Do not depend on the input size
- Example: find the first element

- Linear time algorithms, $O(n)$
- Constant amount of work for every input item
- Example: find the largest element

- Quadratic time algorithms, $O\left(n^{2}\right)$
- Linear amount of work for every input item
- Example: repeatedly removing max element

Asymptotic complexity

- Big-O only cares about the number of operations as n (the size of the input) grows large ($n \rightarrow \infty$)

Cornell University

Complexity classes

- Big-O doesn't care about constant coefficients
- "Constant of proportionality" doesn't matter

$$
\begin{gathered}
0.001 n=O(n) \\
1,000,000 n=O(n)
\end{gathered}
$$

$O\left(n^{2}\right)$

- What is the complexity of:

1. Finding the $2^{\text {nd }}$ biggest element (> all but 1)?
2. Finding the element bigger than all but 2\%?

- Assume we do this by repeated "find biggest"

3. Multiplying two n-digit numbers (using long multiplication)?

Cornell University

How to do selection better?

- If our input were sorted, we can do better
- Given 100 numbers in increasing order, we can easily figure out the $k^{\text {th }}$ biggest or smallest (with what time complexity?)
- Very important principle! (encapsulation)
- Divide your problem into pieces
- One person (or group) can provide sort
- The other person can use sort
- As long as both agree on what sort does, they can work independently
- Can even "upgrade" to a faster sort

How to sort?

- Sorting is an ancient problem, by the standards of CS
- First important "computer" sort used for 1890 census, by Hollerith (the 1880 census took 8 years, 1890 took just one)
- There are many sorting algorithms

How to sort?

- Given an array of numbers:

$$
\left[\begin{array}{llllllllll}
10 & 2 & 5 & 30 & 4 & 8 & 19 & 102 & 53 & 3
\end{array}\right]
$$

- How can we produce a sorted array?

How to sort?

- A concrete version of the problem
- Suppose I want to sort all actors by height

- How do I do this?

Sorting, $\mathbf{1}^{\text {st }}$ attempt

- Idea: Given n actors

1. Find the shortest actor, put him/her first
2. Find the shortest actor in the remaining group, put him/her second
... Repeat ...
n . Find the shortest actor in the remaining group (one left), put him/her last

Sorting, $1^{\text {st }}$ attempt

```
Algorithm 1
1. Find the shortest actor put him first
2. Find the shortest actor in the remaining group,
    put him/her second
        ... Repeat ...
n. Find the shortest actor in the remaining group
    put him/her last
```

- What does this remind you of?
- This is called selection sort
- After round k, the first k entries are sorted

Selection sort - pseudocode

```
function [ A ] = selection_sort(A)
% Returns a sorted version of array A
% by applying selection sort
% Uses in place sorting
n = length(A);
for i = 1:n
    % Find the smallest element in A(i:n)
    % Swap that element with something (what?)
end
```


Filling in the gaps

- \% Find the smallest element in A(i:n)
- We pretty much know how to do this

```
m = A(i); m_index = i;
for j = i+1:n
            if A(j) < m
            m = A(j); m_index = j;
            end
end
                    [ 10 13 41 6
                            % After round 1,
                                    % m = 6, m_index = 4
```


Filling in the gaps

- \% Swap the smallest element with something
- \% Swap element A(m_index) with A(i)

$$
\begin{aligned}
& \operatorname{tmp}=A(i) ; \\
& A(i)=A\left(m _i n d e x\right) ; \\
& A\left(m _i n d e x\right)=\text { tmp; }
\end{aligned}
$$

$$
\left[\begin{array}{cccccccc}
{\left[\begin{array}{ccccccc}
10 & 13 & 41 & 6 & 51 & 11
\end{array}\right]} \\
{\left[\begin{array}{llllllll}
6 & 13 & 41 & 10 & 51 & 11
\end{array}\right]}
\end{array}\right.
$$

Putting it all together

```
function [ A ] = selection_sort(A)
% Returns a sorted version of array A
n = length(A);
for i = 1:n
    % Find the smallest element in A(i:len)
    m = A(i); m_index = i;
    for j = i:n
        if A(j) < m
            m = A(j); m_index = j;
        end
    end
        % Swap element A(m_index) with A(i)
        tmp = A(i);
        A(i) = A(m_index);
        A(m_index) = tmp;
    end

\section*{Example of selection sort}


\section*{Speed of selection sort}
- Let \(n\) be the size of the array
- How fast is selection sort?
\[
\mathrm{O}(1) \quad \mathrm{O}(n) \quad \mathrm{O}\left(n^{2}\right) \quad ?
\]
- How many comparisons (<) does it do?
- First iteration: n comparisons
- Second iteration: n-1 comparisons
- \(n^{\text {th }}\) iteration: 1 comparison

\section*{Speed of selection sort}
- Total number of comparisons:
\[
\begin{gathered}
n+(n-1)+(n-2)+\ldots+1 \\
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
\end{gathered}
\]
- Work grows in proportion to \(n^{2} \rightarrow\) selection sort is \(\mathrm{O}\left(n^{2}\right)\)

\section*{Other ideas for sorting?}```

