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Administrivia 

 Assignment 1 due Friday by 5pm 

– Please sign up for a demo slot using CMS     
(or demo before Friday) 

 

 Assignment 2 out on Friday 
 



“Corner cases” 

 

 Sometimes the input to a function isn’t 
what you expect 

 

– What is the maximum element of a vector of 
length 0? 

 

 When writing a function, you should try 
and anticipate such corner cases 
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Recap from last time 

 We looked at the “trimmed mean” problem for 
locating the lightstick 

– Remove 5% of points on all sides, find centroid 

 

 This is a version of a more general problem: 

– Finding the kth largest element in an array 

– Also called the “selection” problem 

 

 We considered an algorithm that repeatedly 
removes the largest element 

– How fast is this algorithm? 
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Recap from last time 

 Big-O notation allows us to reason about 
speed without worrying about 

– Getting lucky on the input 

– Depending on our hardware 

 

 Big-O of repeatedly removing the biggest 
element? 

– Worst-case (k = n/2, i.e., median) is 
quadratic, O(n2) 
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Classes of algorithm speed 
(complexity) 

 Constant time algorithms, O(1) 

– Do not depend on the input size 

– Example: find the first element 

 

 Linear time algorithms, O(n) 

– Constant amount of work for every input item 

– Example: find the largest element 

 

 Quadratic time algorithms, O(n2) 

– Linear amount of work for every input item 

– Example: repeatedly removing max element 



Asymptotic complexity 

 Big-O only cares about the number of 
operations as n (the size of the input) 
grows large (n  ∞) 
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O(1) O(n) 

Complexity classes 

 Big-O doesn’t care about constant 
coefficients 

– “Constant of proportionality” doesn’t matter 
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O(n2) 
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 What is the complexity of: 

1. Finding the 2nd biggest element (> all but 1)? 

 

 

2. Finding the element bigger than all but 2%? 
• Assume we do this by repeated “find biggest” 

 

3. Multiplying two n-digit numbers (using long 
multiplication)? 
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How to do selection better? 

 If our input were sorted, we can do better 

– Given 100 numbers in increasing order, we can 
easily figure out the kth biggest or smallest 
(with what time complexity?) 

 

 Very important principle! (encapsulation) 

– Divide your problem into pieces 

• One person (or group) can provide sort 

• The other person can use sort 

– As long as both agree on what sort does, they 

can work independently 

– Can even “upgrade” to a faster sort 
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How to sort? 

 Sorting is an ancient problem, 
by the standards of CS 

– First important “computer” sort 
used for 1890 census, by 
Hollerith (the 1880 census took 8 
years, 1890 took just one) 

 

 There are many sorting 
algorithms 

How to sort? 

 Given an array of numbers: 

  [10 2 5 30 4 8 19 102 53 3] 

 

 How can we produce a sorted array? 

  [2 3 4 5 8 10 19 30 53 102] 
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How to sort? 

 A concrete version of the problem 

– Suppose I want to sort all actors by height 

 

 

 

 

 

 

 

– How do I do this? 
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… 

Sorting, 1st attempt 

 Idea: Given n actors 

   

1. Find the shortest actor, put him/her first 

2. Find the shortest actor in the remaining group, put 
him/her second 

   

          … Repeat … 

 

n. Find the shortest actor in the remaining group (one 
left), put him/her last 
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Sorting, 1st attempt 

 What does this remind you of? 

 This is called selection sort 

 After round k, the first k entries are sorted 
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Algorithm 1 

 

1. Find the shortest actor put him first 

2. Find the shortest actor in the remaining group, 
put him/her second 

   

          … Repeat … 

 

n. Find the shortest actor in the remaining group 
put him/her last 

Selection sort – pseudocode 
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function [ A ] = selection_sort(A) 

% Returns a sorted version of array A 

%   by applying selection sort 

%   Uses in place sorting 

n = length(A); 

for i = 1:n 

    % Find the smallest element in A(i:n) 

    % Swap that element with something (what?) 

end 



Filling in the gaps 

 % Find the smallest element in A(i:n) 

 We pretty much know how to do this 

 
    m = A(i); m_index = i; 

    for j = i+1:n 

        if A(j) < m 

            m = A(j); m_index = j; 

        end 

    end 
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[ 10 13 41 6 51 11 ] 

% After round 1, 

%  m = 6, m_index = 4 

Filling in the gaps 

 % Swap the smallest element with something 

 % Swap element A(m_index) with A(i) 

 

   A(i) = A(m_index); 

   A(m_index) = A(i); 

 

   tmp = A(i); 

   A(i) = A(m_index); 

   A(m_index) = tmp; 
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[ 10 13 41 6 51 11 ] 

[ 6 13 41 10 51 11 ] 



Putting it all together 
function [ A ] = selection_sort(A) 

% Returns a sorted version of array A 

n = length(A); 

for i = 1:n 

    % Find the smallest element in A(i:len) 

    m = A(i); m_index = i; 

    for j = i:n 

        if A(j) < m 

            m = A(j); m_index = j; 

        end 

    end 

    % Swap element A(m_index) with A(i) 

    tmp = A(i); 

    A(i) = A(m_index); 

    A(m_index) = tmp; 

end 
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Example of selection sort 
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[ 10 13 41 6 51 11 ] 

[ 6 13 41 10 51 11 ] 

[ 6 10 41 13 51 11 ] 

[ 6 10 11 13 51 41 ] 

[ 6 10 11 13 51 41 ] 

[ 6 10 11 13 41 51 ] 

[ 6 10 11 13 41 51 ] 



Speed of selection sort 

 Let n be the size of the array 

 How fast is selection sort?   

 

             O(1)     O(n)    O(n2)   ? 

 

 How many comparisons (<) does it do? 

 First iteration: n comparisons 

 Second iteration: n – 1 comparisons 

         … 

 nth iteration: 1 comparison 
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Speed of selection sort 

 Total number of comparisons: 

         n + (n – 1) + (n – 2) + … + 1 

 

 

 

 

 

 Work grows in proportion to n2   

       selection sort is O(n2) 
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Other ideas for sorting? 
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