## **Sorting and Selection, Part 1**



Prof. Noah Snavely CS1114

http://www.cs.cornell.edu/courses/cs1114



## **Administrivia**

- Assignment 1 due Friday by 5pm
  - Please sign up for a demo slot using CMS (or demo before Friday)
- Assignment 2 out on Friday

## "Corner cases"

- Sometimes the input to a function isn't what you expect
  - What is the maximum element of a vector of length 0?
- When writing a function, you should try and anticipate such corner cases



2

# **Recap from last time**

- We looked at the "trimmed mean" problem for locating the lightstick
  - Remove 5% of points on all sides, find centroid
- This is a version of a more general problem:
  - Finding the kth largest element in an array
  - Also called the "selection" problem
- We considered an algorithm that repeatedly removes the largest element
  - How fast is this algorithm?

## **Recap from last time**

- Big-O notation allows us to reason about speed without worrying about
  - Getting lucky on the input
  - Depending on our hardware
- Big-O of repeatedly removing the biggest element?
  - Worst-case (k = n/2, i.e., median) is quadratic,  $O(n^2)$



5

# Classes of algorithm speed (complexity)



- Constant time algorithms, O(1)
  - Do not depend on the input size
  - Example: find the first element



- Linear time algorithms, O(n)
  - Constant amount of work for every input item
  - Example: find the largest element



- Quadratic time algorithms,  $O(n^2)$ 
  - Linear amount of work for every input item
  - Example: repeatedly removing max element



6

# **Asymptotic complexity**

 Big-O only cares about the number of operations as n (the size of the input) grows large (n → ∞)





7

# **Complexity classes**

- Big-O doesn't care about constant coefficients
  - "Constant of proportionality" doesn't matter

$$0.001n = O(n)$$
$$1,000,000n = O(n)$$



# ♦ What is the complexity of:

- 1. Finding the 2<sup>nd</sup> biggest element (> all but 1)?
- 2. Finding the element bigger than all but 2%?
  - Assume we do this by repeated "find biggest"
- 3. Multiplying two *n*-digit numbers (using long multiplication)?



c

## How to do selection better?

- If our input were sorted, we can do better
  - Given 100 numbers in increasing order, we can easily figure out the  $k^{th}$  biggest or smallest (with what time complexity?)
- Very important principle! (encapsulation)
  - Divide your problem into pieces
    - One person (or group) can provide sort
    - The other person can use sort
  - As long as both agree on what sort does, they can work independently
  - Can even "upgrade" to a faster sort

#### How to sort?



- Sorting is an ancient problem, by the standards of CS
  - First important "computer" sort used for 1890 census, by Hollerith (the 1880 census took 8 years, 1890 took just one)
- There are many sorting algorithms



11

### How to sort?

• Given an array of numbers:

```
[10 2 5 30 4 8 19 102 53 3]
```

How can we produce a sorted array?

```
[2 3 4 5 8 10 19 30 53 102]
```

#### How to sort?

- A concrete version of the problem
  - Suppose I want to sort all actors by height



- How do I do this?



13

# Sorting, 1st attempt

- Idea: Given *n* actors
- 1. Find the shortest actor, put him/her first
- 2. Find the shortest actor in the remaining group, put him/her second

... Repeat ...

n. Find the shortest actor in the remaining group (one left), put him/her last



# Sorting, 1st attempt

#### Algorithm 1

- 1. Find the shortest actor put him first
- Find the shortest actor in the remaining group, put him/her second
  - ... Repeat ...
- n. Find the shortest actor in the remaining group put him/her last
- What does this remind you of?
- This is called selection sort
- After round k, the first k entries are sorted



15

# Selection sort - pseudocode

```
function [ A ] = selection_sort(A)
% Returns a sorted version of array A
% by applying selection sort
% Uses in place sorting
n = length(A);
for i = 1:n
% Find the smallest element in A(i:n)
% Swap that element with something (what?)
end
```



# Filling in the gaps

- % Find the smallest element in A(i:n)
- We pretty much know how to do this

```
m = A(i); m_index = i;
for j = i+1:n
    if A(j) < m
        m = A(j); m_index = j;
end
end
[ 10 13 41 6 51 11 ]
% After round 1,
% m = 6, m index = 4</pre>
```



17

# Filling in the gaps

- % Swap the smallest element with something
- % Swap element A(m index) with A(i)

```
A(i) = A(m_index);

A(m_index) = A(i);

tmp = A(i);

A(i) = A(m_index);

A(m_index) = tmp;

[ 6 13 41 10 51 11 ]
```

# **Putting it all together**

```
function [ A ] = selection_sort(A)
% Returns a sorted version of array A
n = length(A);
for i = 1:n
% Find the smallest element in A(i:len)
m = A(i); m_index = i;
for j = i:n
        if A(j) < m
        m = A(j); m_index = j;
    end
end
% Swap element A(m_index) with A(i)
tmp = A(i);
A(i) = A(m_index);
A(m_index) = tmp;</pre>
```

Cornell University

10

# **Example of selection sort**

```
[ 10 13 41 6 51 11 ]
[ 6 13 41 10 51 11 ]
[ 6 10 41 13 51 11 ]
[ 6 10 11 13 51 41 ]
[ 6 10 11 13 41 51 ]
[ 6 10 11 13 41 51 ]
```

# **Speed of selection sort**

- Let n be the size of the array
- How fast is selection sort?

$$O(1) O(n) O(n^2)$$
 ?

- How many comparisons (<) does it do?</p>
- First iteration: *n* comparisons
- Second iteration: n 1 comparisons
- n<sup>th</sup> iteration: 1 comparison



2.

# **Speed of selection sort**

Total number of comparisons:

$$n + (n - 1) + (n - 2) + ... + 1$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

 Work grows in proportion to n<sup>2</sup> → selection sort is O(n<sup>2</sup>)

# Other ideas for sorting?



2