

Robustness and speed

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

2

Administrivia

 Assignment 1 is due next Friday by 5pm

– Lots of TA time available (check the web)

 For grading, please get checked off by a
TA, or sign up for a demo slot

– These will be posted to CMS soon

Finding the lightstick center

 Last time: two approaches

 Both have problems…

3

Bounding box Centroid

How can we do better?

 What is the average weight of the people in this
kindergarten class photo?

4

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Mean: (12 x 40 + 236) / 13 = 55 lbs

How can we do better?

 Idea: remove maximum value, compute
average of the rest

5

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Mean: (12 x 40 + 236) / 13 = 55 lbs Mean: 40lbs

6

5% Trimmed mean

 Is it correct?

 Is it fast?

 Is it the fastest way?

 % A is a vector of length 100

 for i = 1:5

 % 1. Find the maximum element of A

 % 2. Remove it

 end

How do we define fast?

 We want to think about this issue in a way
that doesn’t depend on either:

A. Getting really lucky input

B. Happening to have really fast hardware

7

8

How fast is our algorithm?

 An elegant answer exists

 You will learn it in later CS courses

– But I’m going to steal their thunder and
explain the basic idea to you here

– It’s called “big-O notation”

 Two basic principles:

– Think about the average / worst case

• Don’t depend on luck

– Think in a hardware-independent way

• Don’t depend on Intel!

Simple example: finding the max

function m = find_max(A)

% Find the maximum element of an array A

m = A(1);

n = length(A);

for i = 2:n

 if (A(i) > m)

 m = A(i);

 end

end

 How much work is this?

9

how many times will this
comparison be done?

Big-O Notation

 Let’s call the length of the array n

 The amount of work grows in proportion to n

 We say that this algorithm runs in time O(n)

 (Or that it is a linear-time algorithm)

10

function m = find_max(A)

% Find the maximum element of an array A

m = -1;

for i = 1:length(A)

 if (A(i) > m)

 m = A(i);

 end

end

11

Another version of
the trimmed mean

 Given an array of n numbers, find the kth
largest number in the array

 Strategy:

1. Find the biggest number in the array

2. Remove it

– Repeat k times

– The answer is the last number you found

Performance of our algorithm

 How many operations do we need to do,
in terms of k and n?

12

 Given an array of n numbers, find the kth
largest number in the array

 Strategy:

1. Find the biggest number in the array

2. Remove it

– Repeat k times

– The answer is the last number you found

13

Performance of our algorithm

 How much work will we do?

1. Examine n elements to find the biggest

2. Examine n-1 elements to find the biggest

 … keep going …

k. Examine n-(k-1) elements to find the biggest

14

Performance of our algorithm

 What value of k is the worst case?

– k = n

– k = n/2

 How much work will we do in the worst case?

1. Examine n elements to find the biggest

2. Examine n-1 elements to find the biggest

 … keep going …

n/2. Examine n/2 elements to find the biggest

we can easily fix this

15

How much work is this?

 How many elements will we examine in total?

 n + (n – 1) + (n – 2) + … + n/2

 = ?

 We don’t really care about the exact
answer

– It’s bigger than (n / 2)2 and smaller than n2

n / 2 terms

 The amount of work grows in proportion
to n2

 We say that this algorithm is O(n2)

1
6

How much work in the worst case?

 The amount of work grows in proportion
to n2

 We say that this algorithm is O(n2)

 If it takes 10 seconds when n = 1,000,
how long will it take when n = 2,000?

 A: 20 seconds

 B: 40 seconds

17

How much work is this?

18

Classes of algorithm speed

 Constant time algorithms, O(1)

– Do not depend on the input size

– Example: find the first element

 Linear time algorithms, O(n)

– Constant amount of work for every input item

– Example: find the largest element

 Quadratic time algorithms, O(n2)

– Linear amount of work for every input item

– Example: slow median method

19

Asymptotic analysis picture

 Different hardware only affects the
parameters (i.e., line slope)

 As n gets big, the “dumber” algorithm by
this measure always loses eventually

O(1) O(n) O(n2)

20

Where we are so far

 Finding the lightstick

– Attempt 1: Bounding box (not so great)

– Attempt 2: Centroid isn’t much better

– Attempt 3: Trimmed mean

• Seems promising

• But how do we compute it quickly?

• The obvious way doesn’t seem so great…

Questions?

21

