Robustness and speed

Prof. Noah Snavely
CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

- Assignment 1 is due next Friday by 5pm
 - Lots of TA time available (check the web)

- For grading, please get checked off by a TA, or sign up for a demo slot
 - These will be posted to CMS soon
Finding the lightstick center

- Last time: two approaches

- Both have problems...

How can we do better?

- What is the average weight of the people in this kindergarten class photo?

12 kids, avg. weight = 40 lbs
1 Arnold, weight = 236 lbs

Mean: \(\frac{12 \times 40 + 236}{13} = 55 \text{ lbs} \)
How can we do better?

- Idea: remove maximum value, compute average of the rest

\[
\text{Mean: } \frac{12 \times 40 + 236}{13} = 55 \text{ lbs}
\]

5% Trimmed mean

% A is a vector of length 100
for i = 1:5
 % 1. Find the maximum element of A
 % 2. Remove it
end

- Is it correct?
- Is it fast?
- Is it \textit{the fastest} way?
How do we define fast?

- We want to think about this issue in a way that doesn’t depend on either:
 - A. Getting really lucky input
 - B. Happening to have really fast hardware

How fast is our algorithm?

- An elegant answer exists
- You will learn it in later CS courses
 - But I’m going to steal their thunder and explain the basic idea to you here
 - It’s called “big-O notation”

- Two basic principles:
 - Think about the average / worst case
 - Don’t depend on luck
 - Think in a hardware-independent way
 - Don’t depend on Intel!
Simple example: finding the max

```matlab
function m = find_max(A)
% Find the maximum element of an array A
m = A(1);
n = length(A);
for i = 2:n
    if (A(i) > m)
        m = A(i);
    end
end
```

- How much work is this?

Big-O Notation

```matlab
function m = find_max(A)
% Find the maximum element of an array A
m = -1;
for i = 1:length(A)
    if (A(i) > m)
        m = A(i);
    end
end
```

- Let’s call the length of the array \(n \)
- The amount of work grows in proportion to \(n \)
- We say that this algorithm runs in time \(O(n) \)
- (Or that it is a \textit{linear-time} algorithm)
Another version of the trimmed mean

- Given an array of \(n \) numbers, find the \(k^{th} \) largest number in the array

Strategy:
- 1. Find the biggest number in the array
- 2. Remove it
 - Repeat \(k \) times
 - The answer is the last number you found

Performance of our algorithm

- Given an array of \(n \) numbers, find the \(k^{th} \) largest number in the array

Strategy:
- 1. Find the biggest number in the array
- 2. Remove it
 - Repeat \(k \) times
 - The answer is the last number you found

- How many operations do we need to do, in terms of \(k \) and \(n \)?
Performance of our algorithm

- How much work will we do?

 1. Examine n elements to find the biggest
 2. Examine $n-1$ elements to find the biggest

 ... keep going ...

 k. Examine $n-(k-1)$ elements to find the biggest

Performance of our algorithm

- What value of k is the worst case?
 - $k = n$ we can easily fix this
 - $k = n/2$

- How much work will we do in the worst case?
 1. Examine n elements to find the biggest
 2. Examine $n-1$ elements to find the biggest

 ... keep going ...

 n/2. Examine $n/2$ elements to find the biggest
How much work is this?

- How many elements will we examine in total?
 $$n + (n - 1) + (n - 2) + ... + n/2$$
 $$n \text{ / 2 terms}$$
 $$= ?$$

- We don’t really care about the exact answer
 - It’s bigger than $$(n / 2)^2$$ and smaller than $$n^2$$

How much work in the worst case?

- The amount of work grows in proportion to $$n^2$$

- We say that this algorithm is $$O(n^2)$$
How much work is this?

- The amount of work grows *in proportion* to n^2
- We say that this algorithm is $O(n^2)$
- If it takes 10 seconds when $n = 1,000$, how long will it take when $n = 2,000$?
 - A: 20 seconds
 - B: 40 seconds

Classes of algorithm speed

- Constant time algorithms, $O(1)$
 - Do not depend on the input size
 - Example: find the first element

- Linear time algorithms, $O(n)$
 - Constant amount of work for every input item
 - Example: find the largest element

- Quadratic time algorithms, $O(n^2)$
 - Linear amount of work for every input item
 - Example: slow median method
Asymptotic analysis picture

- Different hardware only affects the parameters (i.e., line slope)
- As \(n \) gets big, the “dumber” algorithm by this measure always loses eventually

Where we are so far

- Finding the lightstick
 - Attempt 1: Bounding box (not so great)
 - Attempt 2: Centroid isn’t much better
 - Attempt 3: Trimmed mean
 - Seems promising
 - But how do we compute it quickly?
 - The obvious way doesn’t seem so great...
Questions?