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Administrivia 

 Assignment 1 is due next Friday by 5pm 

– Lots of TA time available (check the web) 

 

 For grading, please get checked off by a 
TA, or sign up for a demo slot 

– These will be posted to CMS soon 



Finding the lightstick center 

 

 Last time: two approaches 

 

 

 

 

 

 Both have problems… 

 

 
3 

Bounding box Centroid 

How can we do better? 

 What is the average weight of the people in this 
kindergarten class photo? 
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0 50 100 150 200 250 

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs 

Mean: (12 x 40 + 236) / 13 = 55 lbs 



How can we do better? 

 Idea: remove maximum value, compute 
average of the rest 
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0 50 100 150 200 250 

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs 

Mean: (12 x 40 + 236) / 13 = 55 lbs Mean: 40lbs 
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5% Trimmed mean 

 

 Is it correct? 

 Is it fast? 

 Is it the fastest way? 

 

 

 % A is a vector of length 100 

 for i = 1:5 

   % 1. Find the maximum element of A 

   % 2. Remove it 

 end 



How do we define fast? 

 We want to think about this issue in a way 
that doesn’t depend on either: 

A.  Getting really lucky input 

B.  Happening to have really fast hardware 
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How fast is our algorithm? 

 An elegant answer exists 

 You will learn it in later CS courses 

– But I’m going to steal their thunder and 
explain the basic idea to you here 

– It’s called “big-O notation” 

 

 Two basic principles: 

– Think about the average / worst case 

• Don’t depend on luck 

– Think in a hardware-independent way 

• Don’t depend on Intel! 



Simple example: finding the max 

function m = find_max(A) 

% Find the maximum element of an array A 

m = A(1);  

n = length(A); 

for i = 2:n 

    if (A(i) > m) 

        m = A(i); 

    end 

end 

 

 How much work is this? 
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how many times will this 
comparison be done? 

Big-O Notation 

 

 

 

 

 

 Let’s call the length of the array n 

 The amount of work grows in proportion to n 

 We say that this algorithm runs in time O(n) 

 (Or that it is a linear-time algorithm) 
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function m = find_max(A) 

% Find the maximum element of an array A 

m = -1;  

for i = 1:length(A) 

    if (A(i) > m) 

        m = A(i); 

    end 

end 
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Another version of  
the trimmed mean 

 Given an array of n numbers, find the kth 
largest number in the array 

 

 Strategy: 

1. Find the biggest number in the array 

2. Remove it 

– Repeat k times 

– The answer is the last number you found 

 

Performance of our algorithm 

 

 How many operations do we need to do, 
in terms of k and n? 
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 Given an array of n numbers, find the kth 
largest number in the array 

 

 Strategy: 

1. Find the biggest number in the array 

2. Remove it 

– Repeat k times 

– The answer is the last number you found 
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Performance of our algorithm 

 

 How much work will we do? 

 

1. Examine n elements to find the biggest 

2. Examine n-1 elements to find the biggest 

      

   … keep going … 

 

k. Examine n-(k-1) elements to find the biggest 
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Performance of our algorithm 

 What value of k is the worst case? 

– k = n 

– k = n/2 

 

 How much work will we do in the worst case? 

1. Examine n elements to find the biggest 

2. Examine n-1 elements to find the biggest 

     … keep going … 

n/2. Examine n/2 elements to find the biggest 

we can easily fix this 
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How much work is this? 

 How many elements will we examine in total? 

           n + (n – 1) + (n – 2) + … + n/2 

                     

       

     = ? 

 

 We don’t really care about the exact 
answer 

– It’s bigger than (n / 2)2 and smaller than n2 

n / 2 terms 

 The amount of work grows in proportion 
to n2 

 

 

 

 

 

 

 We say that this algorithm is O(n2) 
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How much work in the worst case? 



 The amount of work grows in proportion 
to n2 

 

 We say that this algorithm is O(n2) 

 

 If it takes 10 seconds when n = 1,000, 
how long will it take when n = 2,000? 

   A:  20 seconds 

   B:  40 seconds 
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How much work is this? 
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Classes of algorithm speed 

 Constant time algorithms, O(1) 

– Do not depend on the input size 

– Example: find the first element 

 

 Linear time algorithms, O(n) 

– Constant amount of work for every input item 

– Example: find the largest element 

 

 Quadratic time algorithms, O(n2) 

– Linear amount of work for every input item 

– Example: slow median method 
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Asymptotic analysis picture 

 

 

 

 

 Different hardware only affects the 
parameters (i.e., line slope) 

 As n gets big, the “dumber” algorithm by 
this measure always loses eventually 

O(1) O(n) O(n2) 
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Where we are so far 

 Finding the lightstick 

– Attempt 1: Bounding box (not so great) 

– Attempt 2: Centroid isn’t much better 

– Attempt 3: Trimmed mean  

• Seems promising 

• But how do we compute it quickly? 

• The obvious way doesn’t seem so great… 



Questions? 
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