Robustness and speed

Administrivia

- Assignment 1 is due next Friday by 5pm
- Lots of TA time available (check the web)
- For grading, please get checked off by a TA, or sign up for a demo slot
- These will be posted to CMS soon

Finding the lightstick center

- Last time: two approaches

Bounding box

Centroid

- Both have problems...

How can we do better?

- What is the average weight of the people in this kindergarten class photo?

How can we do better?

- Idea: remove maximum value, compute average of the rest

5\% Trimmed mean

```
% A is a vector of length 100
for i = 1:5
    % 1. Find the maximum element of A
    % 2. Remove it
end
```

- Is it correct?
- Is it fast?
- Is it the fastest way?

How do we define fast?

- We want to think about this issue in a way that doesn't depend on either:
A. Getting really lucky input
B. Happening to have really fast hardware

How fast is our algorithm?

- An elegant answer exists
- You will learn it in later CS courses
- But I'm going to steal their thunder and explain the basic idea to you here
- It's called "big-O notation"
- Two basic principles:
- Think about the average / worst case
- Don't depend on luck
- Think in a hardware-independent way
- Don't depend on Intel!

Simple example: finding the max

```
function \(m=\) find_max \((A)\)
\% Find the maximum element of an array \(A\)
\(\mathrm{m}=\mathrm{A}(1)\);
\(\mathrm{n}=\) length (A);
for \(i=2: n\)
    if \(\begin{gathered}(\mathrm{A}(\mathrm{i})>\mathrm{m}) \\ \mathrm{m}=\mathrm{A}(\mathrm{i}) ;\end{gathered} \quad \begin{gathered}\text { how many times will this } \\ \text { comparison be done? }\end{gathered}\)
    end
end
```

- How much work is this?

Cornell University

Big-O Notation

```
function m = find_max(A)
% Find the maximum element of an array A
m = -1;
for i = 1:length(A)
    if (A(i) > m)
        m = A(i);
    end
end
```

- Let's call the length of the array n
- The amount of work grows in proportion to n
- We say that this algorithm runs in time $O(n)$
- (Or that it is a linear-time algorithm)

Another version of the trimmed mean

- Given an array of n numbers, find the $k^{\text {th }}$ largest number in the array
- Strategy:

1. Find the biggest number in the array
2. Remove it

- Repeat k times
- The answer is the last number you found

Performance of our algorithm

- Given an array of n numbers, find the $k^{\text {th }}$ largest number in the array
- Strategy:

1. Find the biggest number in the array
2. Remove it

- Repeat k times
- The answer is the last number you found
- How many operations do we need to do, in terms of k and n ?

Performance of our algorithm

- How much work will we do?

1. Examine n elements to find the biggest
2. Examine n-1 elements to find the biggest
... keep going ...
k. Examine $n-(k-1)$ elements to find the biggest

Performance of our algorithm

- What value of k is the worst case?
$-K=\pi \quad$ we can easily fix this
$-k=n / 2$
- How much work will we do in the worst case?

1. Examine n elements to find the biggest
2. Examine n-1 elements to find the biggest
... keep going ...
$n / 2$. Examine $n / 2$ elements to find the biggest

How much work is this?

- How many elements will we examine in total?

$$
\begin{gathered}
\underbrace{n+(n-1)+(n-2)+\ldots+n / 2}_{n / 2 \text { terms }} \\
=?
\end{gathered}
$$

- We don't really care about the exact answer
- It's bigger than $(n / 2)^{2}$ and smaller than n^{2}

How much work in the worst case?

- The amount of work grows in proportion to n^{2}

- We say that this algorithm is $O\left(n^{2}\right)$

How much work is this?

- The amount of work grows in proportion to n^{2}
- We say that this algorithm is $O\left(n^{2}\right)$
- If it takes 10 seconds when $n=1,000$, how long will it take when $n=2,000$?

A: 20 seconds
B: 40 seconds

Classes of algorithm speed

- Constant time algorithms, $O(1)$
- Do not depend on the input size
- Example: find the first element

- Linear time algorithms, $O(n)$
- Constant amount of work for every input item
- Example: find the largest element

- Quadratic time algorithms, $O\left(n^{2}\right)$
- Linear amount of work for every input item
- Example: slow median method

Asymptotic analysis picture

- Different hardware only affects the parameters (i.e., line slope)
" As n gets big, the "dumber" algorithm by this measure always loses eventually

Where we are so far

- Finding the lightstick
- Attempt 1: Bounding box (not so great)
- Attempt 2: Centroid isn't much better
- Attempt 3: Trimmed mean
- Seems promising
- But how do we compute it quickly?
- The obvious way doesn't seem so great...

Questions?

