

Finding Red Pixels – Part 2

Prof. Noah Snavely

CS1114
http://www.cs.cornell.edu/courses/cs1114

Administrivia

 You should all set up your CSUG accounts

 Your card should now unlock Upson 319

2

Administrivia

 Assignment 1 posted, due Friday, 2/10 by
5pm

– Look under “Assignments!”

– You should have seen the post on Piazza

• If not, let me know

 Quiz 1 on Thursday

3

Academic Integrity

 You may speak to others about the
assignments, but may not take notes

 All code you write must be your own

4

5

Administrivia

 Office hours:

– Prof. Snavely: Th 1:30 – 3pm Upson 4157

– All other office hours are held in the lab, see
staff page for times

Even more compact code

 Special Matlab “Vectorized” code

 Usually much faster than loops

 But please use for loops for
assignment 1

6

for i = 1:12

 D(i) = D(i) + 20;

end

D(1) = D(1) + 20;

D(2) = D(2) + 20;

D(3) = D(3) + 20;

D(4) = D(4) + 20;

D(5) = D(5) + 20;

D(6) = D(6) + 20;

D(7) = D(7) + 20;

D(8) = D(8) + 20;

D(9) = D(9) + 20;

D(10) = D(10) + 20;

D(11) = D(11) + 20;

D(12) = D(12) + 20;

D = D + 20;

D = [10 30 40 106 123 8 49 58 112 145 16 53]

Why 256 intensity values?

7

8-bit intensity (2^8 = 256)

5-bit intensity (2^5 = 32)

5-bit intensity with noise

Why 256 intensity values?

8

4-color CGA display

Today’s (typical) displays:
 256 * 256 * 256 = 16,777,216 colors

256-color Amiga display

Counting black pixels

9

function [nzeros] = count_zeros(D)

% Counts the number of zeros in a matrix

nzeros = 0;

[nrows,ncols] = size(D);

for row = 1:nrows

 for col = 1:ncols

 if D(row,col) == 0

 nzeros = nzeros + 1;

 end

 end

end

Save in a file named count_zeros.m

count_zeros([1 3 4 0 2 0])

What about red pixels?

10

= + +

R G B

red(1,1) == 255, green(1,1) == blue(1,1) == 0

red(1,1) == 255, green(1,1) == 255, blue(1,1) == 0

Are we done?

 Assignment 1: come up with a
thresholding function that returns 1 if a
pixel is “reddish”, 0 otherwise

11

binary images

Finding the lightstick

 We’ve answered the question: is there a
red light stick?

 But the robot needs to know where it is!

12

13

Finding the rightmost red pixel

 We can always process the red pixels as
we find them:
right = 0;

for row = 1:nrows

 for col = 1:ncols

 if red(row,col) == 255

 right = max(right,col);

 end

 end

end

14

Finding the lightstick – Take 1

 Compute the bounding box of the red points

 The bounding box of a set of points is the
smallest rectangle containing all the points

– By “rectangle”, I really mean “rectangle aligned
with the X,Y axes”

Finding the bounding box

 Each red pixel we find is basically a point

– It has an X and Y coordinate

– Column and row

• Note that Matlab reverses the order

15

What does this tell us?

 Bounding box gives us some information
about the lightstick

 Midpoint  rough location

 Aspect ratio  rough orientation

 (aspect ratio = ratio of width to height)

16

Aspect ratio: 2.05/1.08 = 1.9 1.08"

2.05"

17

Computing a bounding box

 Two related questions:

– Is this a good idea? Will it tell us reliably
where the light stick is located?

– Can we compute it quickly?

Computing a bounding box

 Lots of CS involves trying to find
something that is both useful and efficient

– To do this well, you need a lot of clever ways
to efficiently compute things (i.e., algorithms)

– We’re going to learn a lot of these in CS1114

18

19

Beyond the bounding box

 Computing a bounding box isn’t hard

– Hint: the right edge is computed by the code
we showed a few slides ago

– You’ll write this and play with it in A2

 Does it work?

20

Finding the lightstick – Take 2

 How can we make the algorithm more
robust?

– New idea: compute the centroid

 Centroid:

 (average x-coordinate, average y-coordinate)

– If the points are scattered uniformly, this is
the same as the midpoint of the bounding box

– Average is sometimes called the mean

– Centroid = center of mass

21

Computing the centroid?

 We could do everything we want by simply
iterating over the image as before

– Testing each pixel to see if it is red, then doing
something to it

 It’s often easier to iterate over just the
red pixels

 To do this, we will use the Matlab function
called find

The find function

22

img thresh

Your thresholding
function

[X,Y] = find(thresh);

X: x-coords of

nonzero points

Y: y-coords of

nonzero points

23

Using find on images

 We can get the x- and y- coordinates of
every red pixel using find

– Now all we need to do is to compute the
average of these numbers

– We will leave this as a homework exercise

• You might have done this in high school

24

Q: How well does this work?

 A: Still not that well

– One “bad” red point can mess up the mean

 This is a well-known problem

– What is the average weight of the people in
this kindergarten class photo?

How well does this work?

25

How can we do better?

 What is the average weight of the people in this
kindergarten class photo?

26

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Mean: (12 x 40 + 236) / 13 = 55 lbs

How can we do better?

 Idea: remove maximum value, compute
average of the rest

27

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Mean: (12 x 40 + 236) / 13 = 55 lbs Mean: 40lbs

28

How can we avoid this problem?

 Consider a simple variant of the mean
called the “trimmed mean”

– Simply ignore the largest 5% and the smallest
5% of the values

– Q: How do we find the largest 5% of the
values?

D.E. Knuth, The Art of Computer Programming

Chapter 5, pages 1 – 391

29

Easy to find the maximum
element in an array

A = [11 18 63 15 22 39 14 503 20];

m = -1;

for i = 1:length(A)

 if (A(i) > m)

 m = A(i);

 end

end

% At the end of this loop, m contains the

% biggest element of m (in this case, 503)

 % Why -1?

 First, we need to know how many cells
we’re dealing with
– Let’s say length(array) is 100

 want to remove top 5

 How do we remove the biggest 5 numbers
from an array?

30

How to get top 5%?

 % A is a vector of length 100

 for i = 1:5

 % 1. Find the maximum element of A

 % 2. Remove it

 end

31

Removing the top 5% -- Take 1

32

How good is this algorithm?

 Is it correct?

 Is it fast?

 Is it the fastest way?

 % A is a vector of length 100

 for i = 1:5

 % 1. Find the maximum element of A

 % 2. Remove it

 end

How do we define fast?

 It’s fast when length(A) = 20

 We can make it faster by upgrading our
machine

 So why do we care how fast it is?

 What if length(A) = 6,706,993,152 ?

33

How do we define fast?

 We want to think about this issue in a way
that doesn’t depend on either:

A. Getting really lucky input

B. Happening to have really fast hardware

34

35

How fast is our algorithm?

 An elegant answer exists

 You will learn it in later CS courses

– But I’m going to steal their thunder and
explain the basic idea to you here

– It’s called “big-O notation”

 Two basic principles:

– Think about the average / worst case

• Don’t depend on luck

– Think in a hardware-independent way

• Don’t depend on Intel!

For next time

 Attend section tomorrow in the lab

 Reminder: Quiz on Thursday, beginning of
class

36

