Interpolation

Prof. Noah Snavely
CS1114
http://cs1114.cs.cornell.edu
Administrivia

- Assignment 3 due tomorrow by 5pm
  - Please sign up for a demo slot

- Assignment 4 will be posted tomorrow

- Quiz 3 next Thursday
Last time

- Convex hull – the smallest convex polygon containing a point set

- We can use this to describe the shape of the red blob
- And find its orientation
Computing the convex hull

- Gift wrapping algorithm ("Jarvis march")
- Quickhull (divide and conquer)
Today: back to images

- This photo is too small:

- Where was this taken?
- What time was it taken?
- How can we zoom in?
Today: back to images

- This photo is too small:

- Might need this for forensics:
  http://www.youtube.com/watch?v=XgRwI4Z6Wqo
Zooming

- First consider a black and white image (one intensity value per pixel)
- We want to blow it up to poster size (say, zoom in by a factor of 16)
- First try: repeat each row 16 times, then repeat each column 16 times
Zooming: First attempt
Interpolation

- That didn’t work so well
- We need a better way to find the in between values
- Let’s consider one horizontal slice through the image (one scanline)
To Matlab
Interpolation

- Problem statement:
  - We are given the values of a function $f$ at a few locations, e.g., $f(1)$, $f(2)$, $f(3)$, ...
  - Want to find the rest of the values
    - What is $f(1.5)$?

- This is called *interpolation*
- We need some kind of model that predicts how the function behaves
Interpolation

- Example:
  \[ f(1) = 1, \ f(2) = 10, \ f(3) = 5, \ f(4) = 16, \ f(5) = 20 \]
Interpolation

- How can we find $f(1.5)$?
- One approach: take the average of $f(1)$ and $f(2)$

$$f(1.5) = 5.5$$
Linear interpolation (lerp)

- Fit a line between each pair of data points
Linear interpolation

What is $f(1.8)$?

Answer: $0.2 \times f(1) + 0.8 \times f(2)$

$f(1.8) = 0.2 \times 1 + 0.8 \times 10 = 8.2$
Linear interpolation

- To compute $f(x)$, find the two points $x_{left}$ and $x_{right}$ that $x$ lies between

$$f(x) = \frac{(x_{right} - x)}{(x_{left} - x_{right})} f(x_{left}) + \frac{(x - x_{left})}{(x_{left} - x_{right})} f(x_{right})$$
Nearest neighbor interpolation

- The first technique we tried
- We use the value of the data point we are closest to

- This is a fast way to get a bad answer
Bilinear interpolation

- What about in 2D?
  - Interpolate in x, then in y

- Example
  - We know the red values
  - Linear interpolation in x between red values gives us the blue values
  - Linear interpolation in y between the blue values gives us the answer

http://en.wikipedia.org/wiki/Bilinear_interpolation
Bilinear interpolation

\[ f(x, y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)}(x_2 - x)(y_2 - y) + \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)}(x - x_1)(y_2 - y) + \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)}(x_2 - x)(y - y_1) + \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)}(x - x_1)(y - y_1). \]

http://en.wikipedia.org/wiki/Bilinear_interpolation
Nearest neighbor interpolation
Bilinear interpolation
Beyond linear interpolation

- Fits a more complicated model to the pixels in a neighborhood
- E.g., a cubic function

http://en.wikipedia.org/wiki/Bicubic_interpolation
Bilinear interpolation
Bicubic interpolation

Smoother, but we’re still not resolving more detail
Even better interpolation

- Detect curves in the image, represents them analytically
Even better interpolation

nearest-neighbor interpolation

hq4x filter

*SNES resolution: 256x224*

*Typical PC resolution: 1920x1200*

As seen in ZSNES
Polynomial interpolation

- Given $n$ points to fit, we can find a polynomial $p(x)$ of degree $n - 1$ that passes through every point exactly.

\[
p(x) = -2.208 \, x^4 + 27.08x^3 - 114.30 \, x^2 + 195.42x - 104
\]
Polynomial interpolation

- For large $n$, this doesn't work so well...
Other applications of interpolation

- Computer animation (keyframing)
Gray2Color

http://www.cs.huji.ac.il/~yweiss/Colorization/
(Matlab code available)
Limits of interpolation

- Can you prove that it is impossible to interpolate correctly?
- Suppose I claim to have a correct way to produce an image with 4x as many pixels
  - Correct, in this context, means that it gives what a better camera would have captured
  - Can you prove this cannot work?

- Related to impossibility of compression
Example algorithm that can’t exist

- Consider a compression algorithm, like zip
  - Take a file $F$, produce a smaller version $F'$
  - Given $F'$, we can uncompress to recover $F$
  - This is lossless compression, because we can “invert” it
    - MP3, JPEG, MPEG, etc. are not lossless

- Claim: there is no such algorithm that always produces a smaller file $F'$ for every input file $F$
Proof of claim (by contradiction)

- Pick a file F, produce F’ by compression
  - F’ is smaller than F, by assumption
- Now run compression on F’
  - Get an even smaller file, F”
- At the end, you’ve got a file with only a single byte (a number from 0 to 255)
  - Yet by repeatedly uncompressing this you can eventually get F
- However, there are more than 256 different files F that you could start with!
Conclusions

1. Some files will get larger if you compress them (usually files with random data)
2. We can’t (always) correctly recover missing data using interpolation
3. A low-res image can represent multiple high-res images
Extrapolation

- Suppose you only know the values $f(1)$, $f(2)$, $f(3)$, $f(4)$ of a function
  - What is $f(5)$?

- This problem is called extrapolation
  - Much harder than interpolation: what is outside the image?
  - For the particular case of temporal data, extrapolation is called prediction (what will the value of MSFT stock be tomorrow?)
  - If you have a good model, this can work well
Image extrapolation

http://graphics.cs.cmu.edu/projects/scene-completion/
Computed using a database of millions of photos