
CS1114 Assignment 5, Part 2
out: Monday, April 6, 2009.
due: Friday, April 17, 2009, 5PM.

This assignment covers three topics in two parts: interpolation and image transfor-
mations (Part 1), and feature-based image recognition (Part 2). This document con-
tains Part 2. As usual, stub functions for the code you need to write can be found in
~/cs1114/student_files/A5. Please copy these to your working directory.

In this part, you’ll be using local features for object recognition. The ultimate goal
is to have a robot be able to find an object in the environment using feature match-
ing. This approach to object recognition has three basic parts: feature extraction,
feature matching, and fitting a transformation. To test your functions, you will use
the provided part5 gui interface; we also provide two test images, template.png and
search.png. The function stubs and images are in the directory:

~cs1114/student_files/A5/part2.

6 Feature detection

Figure 1: SIFT features detected in an image.

In this assignment you will be using SIFT (Scale-Invariant Feature Transform) to
detect features in an image. We provide you with a function in Matlab called sift

(courtesy of Andreas Veldaldi). The sift function takes in a grayscale image (in dou-
ble format), and returns two matrices, a set of feature coordinate frames and a set of
feature descriptors:

>> img = imread(’book_gray.png’);

>> [frames, descriptors] = sift(im2double(image));

If SIFT detects n features, then frames is a 4× n matrix, and descriptors is a 128× n
matrix. Each coordinate frame (column of the frames matrix) describes the 2D po-
sition, scale, and orientation of a feature. Each feature descriptor (column of the

1



descriptors matrix) is a 128-dimensional vector describing the local appearance of
the corresponding feature. Local features corresponding to the same scene point in
different images should have similar (though not identical) feature descriptors. Fig-
ure 1 shows an example of detected SIFT features in an image.

7 Feature matching

Figure 2: A pair of images we might wish to match.

Your work begins with the second step in our object recognition pipeline: feature
matching. Suppose we are given a reference template image of an object, and a second
image in which we want to find the same object; an example pair of images is shown in
Figure 2. To do so, we need to find pairs of features in the two images that correspond
to the same point on the object; these should be features with similar descriptors.
Thus, feature matching involves finding features with similar descriptors. We’ll use
nearest neighbor matching for this task: for each feature in image 1 (the template
image), we’ll find the most similar feature in image 2 (the search image), that is,
the feature with the most similar descriptor. We’ll define the distance between two
descriptors a and b (two 128-dimensional vectors) using the usual Euclidean distance:

distance(a, b) =

√√√√ 128∑
i=1

(ai − bi)2

Assuming a and b are column vectors, this formula can be written using matrix oper-

2



ator as:
distance(a, b) =

√
(a− b)T (a− b)

where T denotes the transpose operator.

Your first task is to write a function match nn to find nearest neighbors. This func-
tion will take in two sets of descriptors, descs1 and descs2, and will return a 3 ×
numberofcolumnsindescs1 matrix. The first two rows of this matrix will be pairs of
indices of matching features, and the third row will be the distances between the
matching feature descriptors. For instance, the first column of this matrix might be [

1; 27; 1.5 ]; this means that feature 1 in image 1 is closest (in terms of its descrip-
tor) to feature 27 in image 2, and the distance between the descriptors is 1.5.

=⇒ Write the function match nn.

This matching procedure will undoubtedly return many false matches. One way to
reduce the number of false matches is to threshold the matches by distance between
descriptors. You will do this by writing a function threshold matches, which takes in
a set of matches (the output of the function match nn) and a threshold, and returns a
new matrix of matches whose distances are less than the threshold.

=⇒ Write the function threshold matches. This function can be written in one line
of Matlab code (not including comments), though this is not a requirement.

Figure 3: Example of images with repetitive features.

It turns out that the even this thresholding doesn’t work that well. Consider the ex-
ample image pair shown in Figure 3. There are a lot of repetitive features in these
images, and all of their descriptors will look similar. To find unique, distinctive fea-
ture matches, consider the following strategy: for each descriptor a in image 1, find
the two nearest neighbors in image 2. Call these b and c, and let their distances
from a be distance(a, b) and distance(a, c). If distance(a, b) is much smaller than
distance(a, c), then b is a much better match than even the second closest feature.
Thresholding using this test will tend to get rid of features with multiple possible
matches. To make this concrete, we’ll define our new distance function between a and

3



b as the ratio of the distances to the two nearest neighbors.

distance(a, b)

distance(a, c)
.

We’ll call this the ratio distance. You’ll now write a function match nn ratio that does
the exact same thing as match nn, except that it returns the ratio distance in the third
row of the output matrix.

=⇒ Write the function match nn ratio. You’ll need to find the top two nearest neigh-
bors in this function. Your function must spend at most O(n) time finding the top two
neighbors for each feature in the first image, where n is the number of features in the
second image.

You can now use your threshold matches function on the output of this function. Note
that the distances are now ratios rather than pure distances, so the “units” are differ-
ent (for instance, the ratio distance will be always be between 0 and 1). For the ratio
distance, a threshold of 0.6 usually works pretty well.

To visualize a set of matches, you can use a function we provide to you called plotmatches.
This function takes in two images, two sets of frames, and your matches, and draws a
figure where you can see the matches. If you provide ’interactive’, 1 as the last two
arguments to this function, you will get an interactive window where you can click on
features to see their matches. Here’s an example call to plotmatches, assuming that
our images are stored in variables template and search, and our frames in frames1

and frames2:

>> plotmatches(template, search, frames1, frames2, matches, ’interactive’, 1)

Speeding up SIFT. Using it’s default parameters, SIFT can be fairly slow. One
reason is that SIFT builds an image pyramid and searches every different level of the
pyramid for features (incidentally, this is one way SIFT achieves scale invariance). To
speed things up, we can tell SIFT to skip the first couple levels. To do this, provide
’FirstOctave’, 1 as the last two arguments to the sift function, e.g:

>> [frames, descs] = sift(im2double(img), ’FirstOctave’, 1);

The default value of ’FirstOctave’ is -1, so this tells SIFT to skip the first two levels
of the pyramid (also known as octaves, like in music—the fact that the name is the
same is not coincidental, but this is outside of the scope of this assignment). Adding
this argument will result in many fewer features, however, which might also be a
problem if too few are detected.

8 Finding the transformation between two images

4



The final step is to find a transformation mapping the features in image 1 to the
corresponding features in image 2. This is the most complicated of the steps. We
will be using the RANSAC algorithm to find a transformation despite the existence of
(potentially many) false matches. The first step is to write a function that takes three
matches (that you will sample at random) and fits an affine transformation T , where

T =

 a b c
d e f
0 0 1

 .

Recall from class that this problem is equivalent to solving two linear systems with
three equations each, and that a linear system can be represented by a matrix equa-
tion

Ax = b.

Where x is the unknown variables, Ax represents the left-hand-side of the linear
system, and b represents the right-hand-side. The solution to the linear system is
then:

x = A−1b.

You will do this fitting inside of a function called fit affine transform. This function
will take in two 2 × 3 matrices, P and Q, where the columns of P are 2D coordinates
in the first image and the columns of Q are the corresponding 2D coordinates in the
second image. This function will return a 3× 3 affine transformation matrix T:

function T = fit_affine_transform(P, Q)

=⇒ Write the function fit affine transform.

Next, we’ll use this function inside of the RANSAC algorithm. Recall that RANSAC
works as follows:

RANSAC(input: set of matches):

1. Randomly select three matches.

2. Solve for the corresponding transformation T .

3. Compute the number of inliers to T .

4. If T has the most inliers so far, save it.

5. Repeat steps 1-4 N times, then return the best T .

You’ll be implementing RANSAC in a function called ransac affine. This function
will take in five parameters: the frames of the two images, the matches resulting
from your matching and thresholding code, the inlier threshold, and the number of
rounds. RANSAC will return two outputs: the final transformation T, and a matrix
inliers containing the matches that are inliers to this transformation:

5



function [T, inliers] = ransac_affine(frames1, frames2, matches, threshold, rounds)

The builtin function randint might be helpful here.

=⇒ Write the function ransac affine.

Next, you should put all of these steps (SIFT, matching, RANSAC) together in a func-
tion called detect object. This function takes two images, search and template, and
returns two outputs: a logical value detected (which is 1 if the object is detected and
0 otherwise), and a transformation T (if the object is not detected, then T could contain
anything, e.g., all zeros). It’s up to you to decide when the object is detected.

=⇒ Write the function detect object.

We can now finally write a function to draw the outline of a template object image in
a search image. To do so, we’ll transform the four corners of the template image using
the affine transform you solved for, then draw a polygon connecting the four trans-
formed points. You’ll be writing this in a function called draw transformed object.
This function will be called from an interface we provide called part5 gui, which you
can use to test your entire pipeline. The GUI will call your draw transformed object

function (in fact, it will also call your detect object function).

To draw lines in Matlab, you can use the regular plot function. For instance:

plot(canvas, [x1; x2], [y1; y2], ’r’, ’LineWidth’, 3);

will draw a line from (x1, y1) to (x2, y2) on the provided canvas (which is just a
normal image in Matlab). The interface to draw transformed object is:

function draw_transformed_object(canvas, template, T)

where canvas is the image to draw on, template is the template image (so you know
which points to transform), and T is the transformation matrix.

=⇒ Write the function draw transformed object.

9 Object tracking on robots

Now comes the tricky part. Once you have used part5 gui to test your code, your next
task is to get this working on the robots. Your goal is to be able to give the robot an
image of an object, and have it roam around the room looking in search of that object.
To do so, it will patrol the room and use your detect object function. This part is
fairly open-ended; it is up to you how you implement the patrolling.

Once the robot has found the object (if it ever does), it should announce that fact by
playing a song using robotPlaySong.

6



=⇒ Write the function robot patrol for object. This function takes a two parame-
ters, a handle to a robot and an image that the robot should seek out.

10 What to turn in

To recap, you will turn in the following functions for Part 2:

1. match nn (Section 7)
2. threshold matches (Section 7)
3. match nn ratio (Section 7)
4. fit affine transform (Section 8)
5. ransac affine (Section 8)
6. detect object (Section 8)
7. draw transformed object (Section 8)
8. robot patrol for object (Section 9)

7


