

Introduction to Computing Using Matlab

CS 1112

Dr. K.-Y. Daisy Fan

<http://www.cs.cornell.edu/courses/cs1112/>

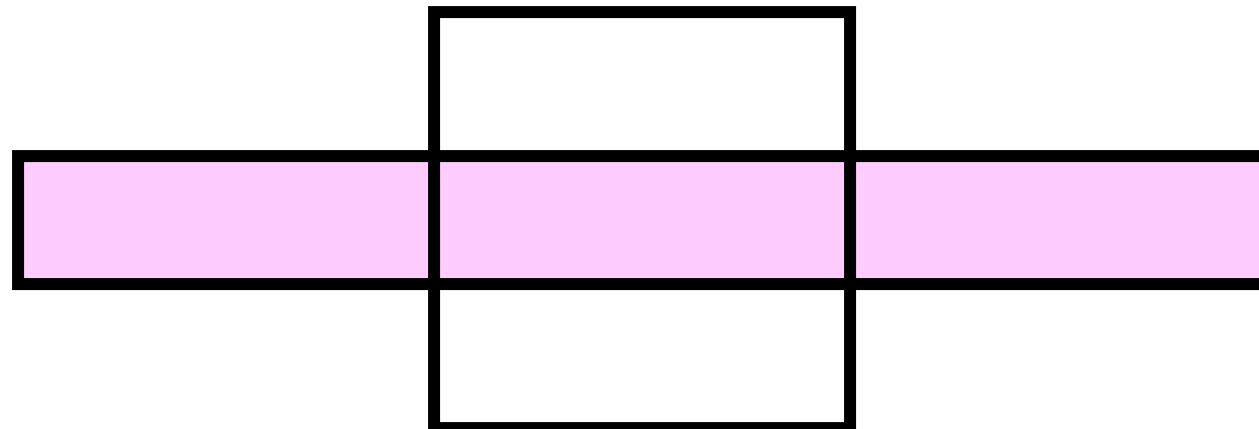
Discussion starts next week!

In Upson 225 lab, not classroom listed in Student Center

Today's lecture

- An illuminating problem
- CS1112 philosophies & syllabus
- What is computer programming?
- Choosing between CS1112 & CS1110
- Course logistics/policies (highlights)

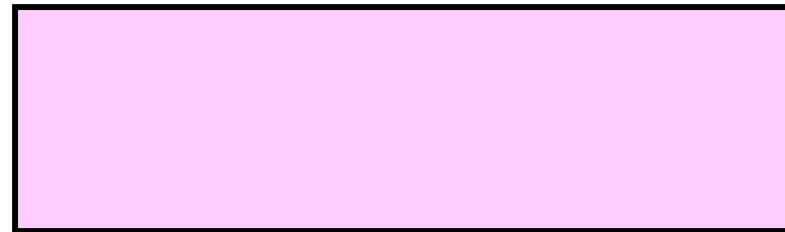
Discussion starts next week!


In Upson 225 lab, not classroom listed in Student Center

An illuminating problem: computing square roots

- Suppose $A > 0$
- **Observation:** If A is the area of a square ...
then I can just measure the side length—that is \sqrt{A}
- **Solution idea:** Make a square with area A
- **Real task:** Make a sequence of increasingly square rectangles, each with area A

How to make a rectangle “more square”?


- If a square and a rectangle both have area A ...

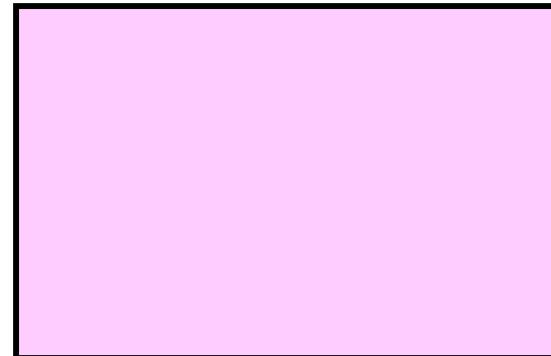
- then \sqrt{A} is between the length and width of the rectangle

An improvement strategy

Current:

L

A/L


Recipe:

$$L_{\text{new}} = (L + A/L) / 2$$

The average of
the length and
width.

Next:

L_{new}

A/L_{new}

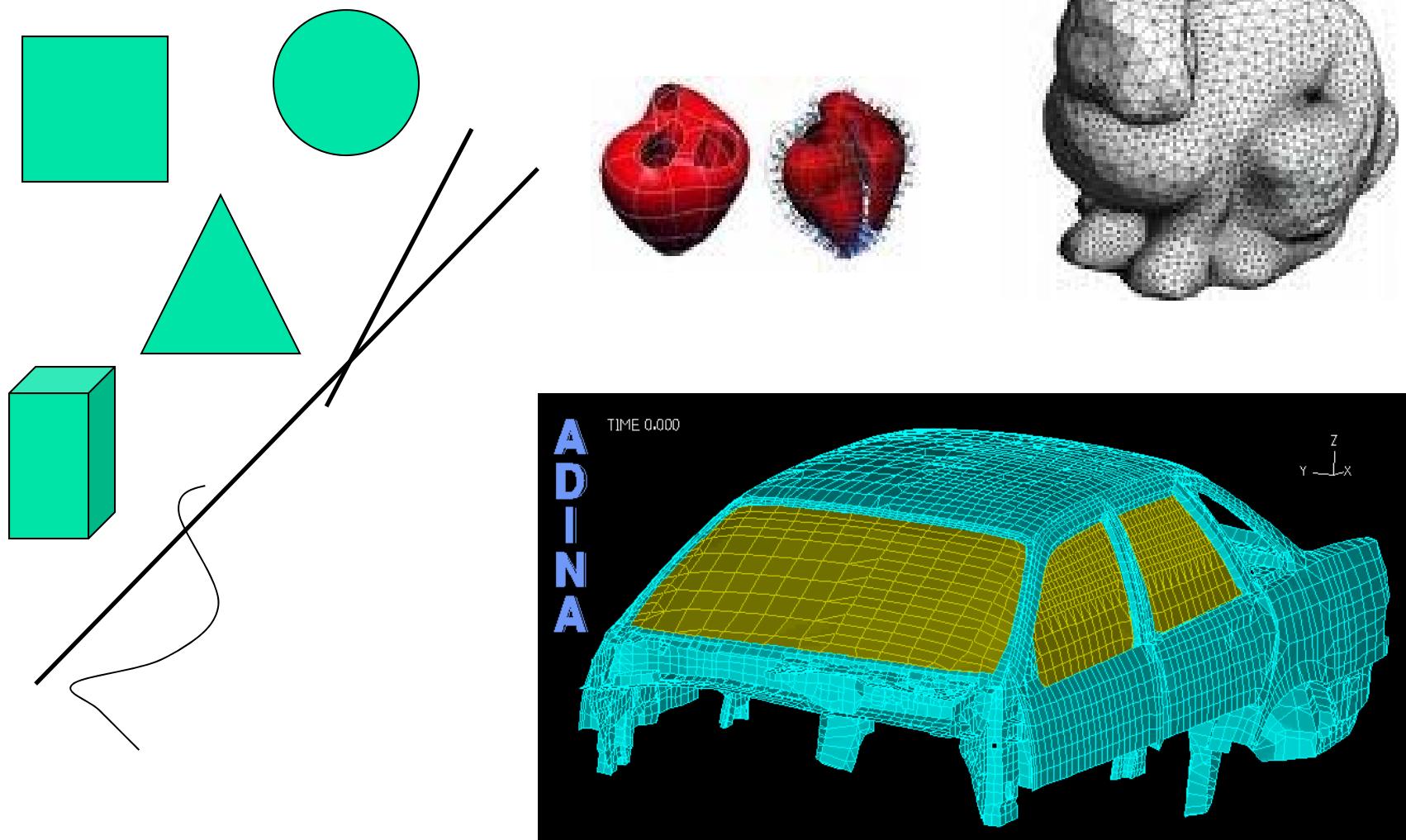
A Matlab program to make “increasingly square” rectangles

```
% The first rectangle...
L1 = A;
W1 = 1;

% The second rectangle...
L2 = (L1+W1)/2;
W2 = A/L2;

% The third rectangle...
L3 = (L2+W2)/2;
W3 = A/L3;

% and so on...
```


Some conclusions from square root finding problem

- It paid to have a geometric sense
- A complicated computation was reduced to a sequence of elementary calculations
- A program is like a formula (or sequence of formulas)

Course Goals

- Develop your “computational senses,” senses that you need in computer problem-solving
- Develop a facility with the Matlab programming environment

A sense of geometry

A sense of complexity

What is the best itinerary to visit Boston, Miami, LA, Dallas?

$3! = 6$ possibilities

Add Seattle, NYC
Austin, Denver

$7! = 5040$

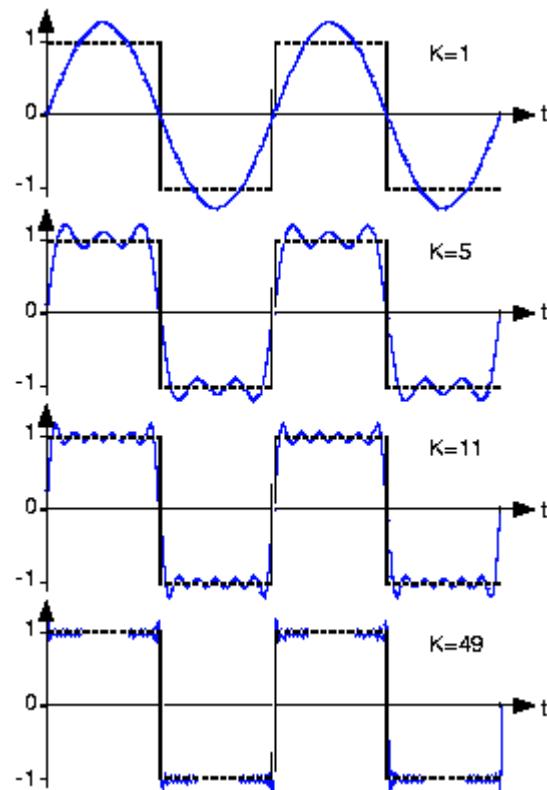
If a computer can process 1 billion itineraries a second, how long does it take to solve a 100-city problem?

A sense of complexity

What is the best itinerary to visit Boston, Miami, LA, Dallas?

$3! = 6$ possibilities

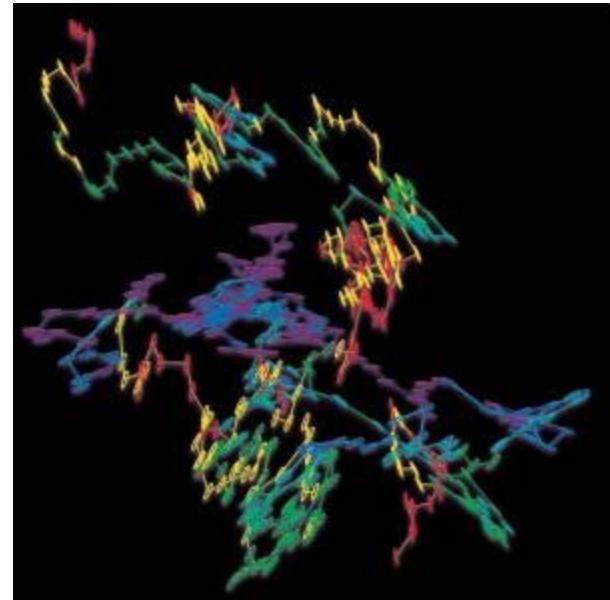
Add Seattle, NYC
Austin, Denver


$7! = 5040$

If a computer can process 1 billion itineraries a second, how long does it take to solve a 100-city problem?

About a century...

A sense of approximation & error



π

$$1/3 = .33333\dots$$

A sense of randomness and probability

Random walk
Brownian motion in water

Course Goals

- Develop your “computational senses,” senses that you need in computer problem-solving
- Develop a facility with the Matlab programming environment

Computer problem-solving

Key: Algorithmic thinking

Algorithm:

A step-by-step procedure that takes you from a prescribed set of inputs to a prescribed set of outputs

Program:

The algorithm expressed in a specific language, e.g., Matlab

Computer problem-solving — Programming

- Developing instructions for the computer to execute (in order to solve some problem)
- The steps must be **logical**
- Use a particular language *and follow the rules of the language* (grammar/**syntax**)

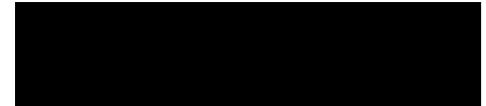
Example: *Adding songs from the internet to your music library*

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don't steal music.)
- Click on the music file to download it onto your computer
- Drag the file to your library

Reference: iTunes

Example: *Adding songs from the internet to your music library*

- Drag the file to your library
- Click on a music file to download it onto your computer
- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don't steal music.)


These steps are out of
order! Illogical!

Example: *Adding songs from the internet to your music library*

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don't steal music.)
- Click on the music file to download it onto your computer
- Drag the file to your library

Reference: iTunes

Example: *Adding songs from the internet to your music library*

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don't steal music.)
- Click to dowNload

- file Drag your librAry to

Bad grammar (syntax)!

Computer programming is ...

- a **tool** used by computer scientists, engineers, and other professionals
- not all of computer science
- Think about astronomy: Telescope is a tool used by astronomers; astronomy is not about telescopes...

Matlab is the vehicle we use

With the Matlab environment, you can easily

- Develop programs
- Display results & ideas graphically
- Interact with large data sets (process text, image, and other files)

Matlab has extensive libraries of mathematical, statistical, simulation, and other tools. It is heavily used in engineering & sciences, both in industry and academia.

Engineering students take one of these courses:

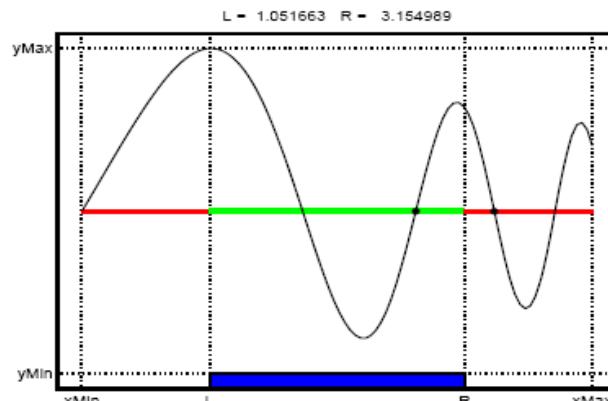
- CS1112 – this course, Matlab
- CS1110 – Python

Each course satisfies the Engineering Computing Requirement. In 1112 **you will learn procedural programming in depth and be introduced to object-oriented programming.**

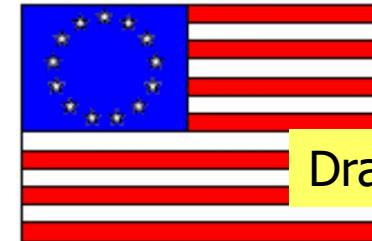
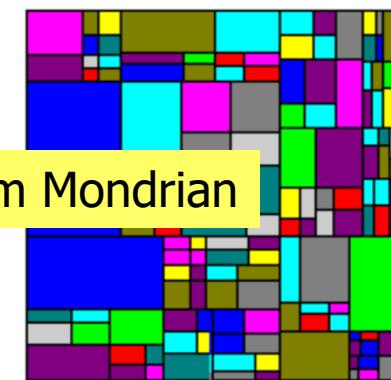
Each course can serve as the prerequisite for CS/ENGRD 2110 Object-Oriented Programming & Data Structure

CS1112 has a focus on *computational science & engineering*

Approximation, randomness,
model building, sensitivity of models


- Lecture examples and homework illustrate above themes

- Edge detection
- Ranking web pages
- Congressional apportionment



Some past programming assignments

- Find the US population center from census data
- Organize protein data using structure arrays
- Mozart's musical dice game

Root finding tool

Draw the random Mondrian

Draw the "Betsy Ross Flag"

Pyramid of Khufu, Egypt. Scale is 5.54 feet per unit length on axes.
Select a path using multiple mouse clicks. Click outside the map to stop.
Total distance: 8379.3 feet

Path distance tool
(like that in Google Earth)

CS1110 – in Python

- Switched from Java to Python because Python is a friendlier and more modern object-oriented language.
- Python is more relevant to non-computer scientists than Java—numerical libraries are available

Matlab and Python are just different vehicles we use to travel the “computational landscape.”

- Different scenery along the way
- Both vehicles can get you there

CS1112

- No prior programming experience
- One semester of Calculus
- ***Focus on computational science & engineering***
- Matlab

CS1110

- No prior programming experience
- No Calculus
- ***Focus on software development***
- Python

Related to CS 1112: ENRG 1112

- Taught by Prof. Andy Ruina of MAE, “Practical Computing for Engineering”
- 1 credit, optional, Fri 2:30-3:20pm, Kimball B11
- Course oriented towards numerical methods in engineering and includes symbolic computation, all in MATLAB
- “Intersection” of computing, engineering math, and engineering physics

<https://classes.cornell.edu/browse/roster/FA18/class/ENRG/1112>

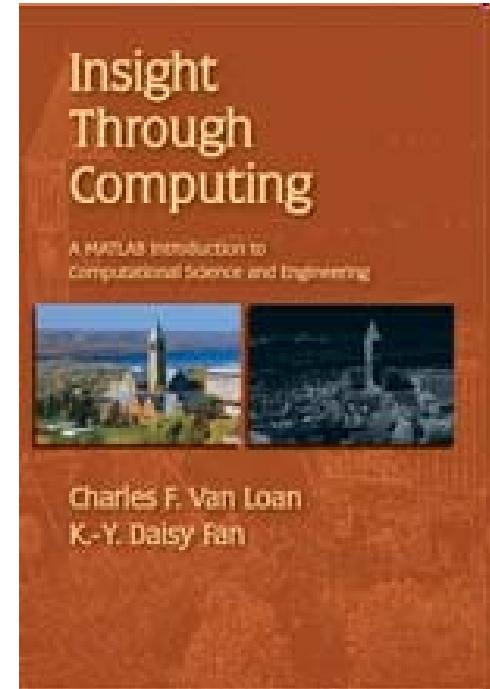
CS1112 requirements

4 credits → $4 \times 3 = 12 \text{ hrs/week}$

In class: 2hr lec + 1 hr dis = 3 hrs/week

Outside class: 9 hrs/week

- Attend **lecture**
- Attend **discussion**—get individual attention/help on weekly exercises!
- Monitor course **announcements on website**
- Do homework: best 5 of 6 **programming projects**
- Take 2 **prelims** and a **final exam** at their scheduled times
- Answer in-class **quizzes** (use your clicker)
- Adhere to the **Code of Academic Integrity**


Grading

- Best five* of six projects (25%)
 - Your lowest-scored project is eligible to be dropped only if you scored at least 50% on it
- Discussion exercises (4%)
- In-class quizzes (1%)
- Prelim 1 (20%)
- Prelim 2 (20%)
- Final exam (30%)

Course Materials

- *Insight Through Computing*

*A Matlab introduction to Computational Science
and Engineering*

- An **iClicker** clicker
(or mobile app)

- **MATLAB Student Version** (2008 or later) download your own copy or use public computer labs (Engineering Quad and RPCC)

FREE download
for students.
Get it!

Consulting & Computing

- Consulting in ACCEL Green Room (Engineering Library, Carpenter Hall). Check course website for hours.
- To download MATLAB, see course website
- Some labs that have MATLAB:
 - Upson 225
 - ACCEL
 - Carpenter Hall study area
 - North campus: RPCC

CS1112 Discussion Sections – start next week

Sec #	Time	Room
201	T 12:20-1:10p	UPS 225 lab & HLS 401
202	T 1:25-2:15p	UPS 225 lab & HLS 401
203	T 2:30-3:20p	UPS 225 lab & HLS 401
204	T 3:35-4:25p	UPS 225 lab & HLS 401
205	W 10:10-11:00a	UPS 225 lab & HLS 401
206	W 11:15a-12:05p	UPS 225 lab & HLS 401
207	W 12:20-1:10p	UPS 225 lab & HLS 401
208	W 1:25-2:15p	UPS 225 lab & HLS 401
209	W 2:30-3:20p	UPS 225 lab & HLS 401
210	W 3:35-4:25p	UPS 225 lab & HLS 401

Discussions are held in UPS (Upson) 225 lab the first two weeks